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The evolution of autonomous systems depends on their constituent parts’ ability to act, seemingly independently,
so that their collective behavior, termed emergent behavior, results in novel properties that appear at a higher level.
Although these emergent behaviors can be beneficial, systems can also exhibit unintentionally and intentionally
malicious emergent misbehaviors. As systems are becoming more complex and sophisticated, their emergence
characteristics may result in a new type of risk, called emergent risk, which would affect both the systems and society.
Although there have been several studies on achieving positive desirable emergent behavior, little attention has been
given to the risk of undesirable emergence from either the safety or the security perspective. The main objective of
this paper is to provide a structured approach to understanding emergent risks in the context of autonomous systems.
This approach has been analyzed based on an emergent risk application example – a swarm of drones. We explore
different security and safety risk co-analysis methods with a causal interpretation, and provide a comparative analysis
based on theoretical factors that are important for assessing the emergence of various threats. The study results reveal
each method’s strengths and weaknesses for addressing emergent risks, by providing insights into the need for the
development of an emergent risk analysis framework.
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1. Introduction
As the world becomes more complex and inter-
connected, we need a deeper understanding of
how autonomy and interdependencies interact to
deliver new capabilities without unintended emer-
gent behaviors MITRE (2018). To some extent,
their emergence is a natural consequence of the
advances in the increasingly ubiquitous infor-
mation and communication technologies (ICTs).
As in the “butterfly effect”, small changes in
a system can lead to dramatically unexpected
outcomes. The notion of emergent behavior has
arisen mainly in the context of networked smart
systems, where many elements can interact with
each other, and an individual study on a limited
number of components may not predict the behav-
ior of the whole system.

However, the emergent behavior can be un-
desirable, leading to significant safety problems.
An example of such a safety-related misbehavior
is the closure of the London Millennium Foot-
bridge after failing to anticipate the emergence of
laterally-induced pedestrian forces Dallard et al.
(2001). Another example is the potential for traf-
fic jams in traffic management systems, where

analysis of individual human drivers and cars
cannot explain the emergence of traffic conges-
tion. Another example, related to security, is the
Stuxnet worm targeting Iran’s nuclear industrial
control systems (ICSs) Kushner (2013), which
also had widespread effects on several other coun-
tries. Given the potentially serious consequences
of such behavior, it is crucial to identify the causes
of emergent misbehaviors in systems. These be-
haviors must be analyzed to find the potential
risks of undesirable emergent properties so as to
improve system resilience and reinforce its safety
and security envelope. Therefore, predicting the
risks most likely to emerge would not only ensure
better risk mitigation, but could also prevent an
undesirable emergent property from arising in the
first place.

The objective of this study is to propose a
structured approach for studying emergent risks
– problems caused by the emergent misbehav-
iors. First we identify the contributing factors,
which are the sources of emergence that need to
be assessed by risk analysis methods. Then we
discuss feasibility of several risk causal analysis
approaches for assessing the risks of emergent
misbehaviors. The results suggest that the existing
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approaches should be improved, and that perhaps
a new emergent risk analysis framework should
be developed in order to create an automated
approach, which would consider both individual
components and systemic factors to prevent unde-
sirable emergent misbehaviors.

The paper is organized as follows. Section 2
provides the background of this study. Section 3
analyzes the literature on risk analysis of emer-
gent behavior. Section 4 explains the research
method. In Section 5, we present a taxonomy and
a structured approach for analyzing emergent mis-
behavior in autonomous systems. We discuss our
approach in a hypothetical scenario, and compare
risk analysis approaches based on the factors that
affect emergence. Section 6 discusses our results.
The conclusions are presented in Section 7.

2. Background

2.1. Autonomous systems

An autonomous system can be defined as a “ma-
chine, whether hardware or software, that, once
activated, performs some task or function on its
own” Williams and Scharre (2015). Features of
autonomous systems can be introduced when parts
of the system begin to exhibit autonomous-like
functioning behaviors as a result of the inter-
actions among the system’s parts and between
the system and the external environment. There-
fore, the first key concept is autonomy, defined
as a system’s capacity for “integrated sensing,
perceiving, analyzing, communicating, planning,
decision-making, and acting, to achieve its goals
as assigned by its human operator(s)” Huang
(2004). The degree of the autonomous capabil-
ities can be represented by the level of auton-
omy (LoA), which is determined by the system’s
ability to sense and react to the environment in
different ways. A six-level autonomy scale has
been developed by the US Navy’s Office of Naval
Research Williams and Scharre (2015), with
higher levels corresponding to increased com-
plexity. From least to most autonomous, the lev-
els are human-operated, human-assisted, human-
delegated, human-supervised, mixed-initiative,
and fully-autonomous. The second key feature is
that autonomy may facilitate more efficient inter-
connectivity and distribution of functions between
various parts of the system and between an au-
tonomous system and its environment.

2.2. Emergent behavior

The term “emergent behavior” or “emergence”
refers to the phenomenon of new collective prop-
erties arising unexpectedly from the behavior of
the components in a system. Emergent behavior
can be beneficial in artificial systems, such as the
robotic systems inspired by the impressive capa-
bilities of social insect colonies in nature. How-

ever, many intentional and unintentional events
can also trigger undesirable emergent misbehav-
ior, putting the system at risk. Thus, emergence
can be considered from many different angles. For
instance, Husted and Myers (2014) discuss how
emergent phenomena could be studied from either
an attack or a defense perspective.

Fromm (2005) classified emergence phenom-
ena into four distinct types based on the spectrum
of emergent behaviors: (i) simple emergence with-
out top-down feedback, characterized by feedfor-
ward interactions between the components of a
system; (ii) weak emergence, which includes top-
down feedback and which deals with feedback
relations through independent direct and indirect
interactions at the low microscopic level; (iii) mul-
tiple emergence, which includes many types of
feedbacks and deals with many feedback loops
on different time scales; and (iv) strong emer-
gence, which involves emergent properties and
feedback relations on a higher macroscopic level
of complexity, such as between systems of sys-
tems (SoS). For our risk analysis purposes, we fo-
cus on the first two types of emergence, which can
be studied and predictable, at least in principle.

3. Related Work
The issue of unintended emergent behavior in
the field of distributed networked systems has
been raised by the US National Research Coun-
cil. The resultant research report Council (2001)
about networked systems of embedded comput-
ers emphasized that unintended emergent behav-
iors often emerge when multiple components are
combined, and the outcomes are not immediately
apparent from the individual components. Mogul
(2006) discusses examples of emergent misbehav-
ior in complex software systems, while Ferreira
et al. (2013) provided a taxonomy for charac-
terizing emergent properties. Husted and Myers
(2014) emphasize the importance of risk analysis
to describe non-linear security risks from emer-
gent attacks. The risk posed by emergent secu-
rity phenomena requires a suitable methodologi-
cal basis. Allan et al. (2013) review eleven well-
established complexity science tools and tech-
niques that can be used to identify emerging risks
in complex systems. However, we have reduced
our scope to one part of complex systems: au-
tonomous systems. Due to the smartness of au-
tonomous systems Kalluri et al. (2020), we need
to consider how their unique features influence
the feasibility and usefulness of risk analysis for
managing potential emergent misbehavior.

4. Research method

4.1. Research motivation

While many functions of autonomous systems
have become accessible online, the increasing sys-
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tem complexity creates new vulnerabilities and
risks, which are greater than the sum of the risks
of the individual components Axelrod (2013). An
obvious challenge is how to identify risks that
are yet unknown and to ensure resilience against
them. Continuing the definition of risk in standard
ISO 31000, the new ISO 31050 Jovanovic (2019)
will further contribute to managing the changing
risk landscape due to the emerging risks. While
ISO 31000 deals with handling known risks, pre-
viously unknown risks also need proper assess-
ment to be well managed by the companies and
organizations. There are different types of risk
analysis, which can be used to identify different
problems and solutions. Our study focuses on the
conceptual assessment of existing security and
safety risks and on causal co-analysis methods to
support and enhance emergent risk analysis. Thus,
the goal of this research can be formulated as
the following main research question: can existing
risk analysis approaches identify emergent risks?

4.2. Research design

There are various integrated safety and security
approaches used to analyze risks Kavallieratos
et al. (2020). For our study, we selected methods
that included causation in the risk analysis pro-
cess. There are two important factors to consider:
the source of the risk and its consequences. Their
relationships can be understood by integrating
causation into the risk analysis process, either to
identify which causes/sources of risk contributed
causally to a consequence or to predict the poten-
tial consequences of a cause. Figure 1 shows our
focus on risk analysis methods that incorporate
safety and security in their cause-effect analysis.

Fig. 1. The study focus on integrated safety and secu-
rity in risk causal analysis.

Below we list a few well-known safety and
security co-analysis methods for the risk analysis,
which consider causation in their processes:

• System theoretic process analysis (STPA)-
SafeSec Friedberg et al. (2017).

• Failure mode, vulnerabilities and effects analy-
sis (FMVEA) Schmittner et al. (2014).

• Bayesian belief network (BBN) Fenton and
Neil (2018).

• Unified framework for risk and vulnerability
analysis Aven (2007).

5. Results

5.1. The emergent risk concept

5.1.1. An emergent risk taxonomy

Emergent risks or “black swans” as Taleb (2007)
called them, have three main attributes: (i) they
have extraordinary impact; (ii) they are unex-
pected; and (iii) people can explain them after the
fact. We define emergent risks as unintentional
with safety impact and intentional with security
and potential safety impact. Safety is associated
with accidental failures that could result in un-
desirable consequences for the system’s environ-
ment. On the other hand, security is related to ma-
licious misuse, particularly cyberattacks. Figure 2
shows a high-level emergent risk taxonomy.

Fig. 2. A high-level emergent risk taxonomy.

On the safety side, increased dependence on
technology may lead to common risks arising
from failures and human errors or under normal
conditions. Systems are vulnerable to failure at
scale, and a number of unanticipated emergent
effects could arise. Han and DeLaurentis (2013)
analyzed the complex propagation of failures
through interdependencies between systems by
integrating propagating failure rates with inherent
individual failures. In addition, complex interac-
tions between components within a system could
cause accidents that may emerge from normal op-
erations. For example, a mid-air collision between
two flights over the Amazon happened without
any root cause of catastrophic equipment failures
or human errors Lacagnina (2009). Instead, the
investigation showed that the accident occurred
within the normal variability of the system’s per-
formance range, where a sudden unexpected com-
bination or resonance of performance variations
changed the system’s functioning De Carvalho
(2011).

On the security side, the intentional risks of
being exposed by cyber-criminals could threaten
society either with or without safety impact. In
the emergent domain, attack operations can be



Proceedings of the 31st European Safety and Reliability Conference 386

Fig. 3. The general process of analysis of emergent misbehavior in autonomous systems.

divided into known and novel threats. For ex-
ample, in the known threats, a traditional bot-
net attack scenario can be considered a form of
intentional emergent misbehavior. For example,
distributed denial-of-service (DDoS) attacks only
emerge when a large number of compromised
bots are acting in harmony to achieve a common
attack goal of service disruption. For novel threats,
in more autonomous infrastructures, such attacks
can have different effects, broader and more catas-
trophic than in the past Kaloudi and Li (2020).
Advanced botnets can benefit from emergent col-
lective behavior to cause more robust intent-based
attacks based on the swarm mentality Manky
(2018). Such swarm botnets using artificial intel-
ligence (AI) technologies with learning capability
can involve feedback loops across different levels,
combining feedback from the environment.

5.1.2. Developing an emergent risk profile

To prepare for unknown risks, it is useful to de-
velop an emergent risk profile, which may include
one or more related risks. A common method
of developing a risk profile is scenario analysis,
which can reveal many important aspects of future
situations based on current knowledge. Follow-
ing Kosow and Gaßner (2008), we propose the fol-
lowing process for establishing an emergent risk
horizon context for the risk management process,
providing insights for better risk coverage.

• System identification. We examine the current
state of the autonomous system, considering
its characteristics using the conceptual frame-
work of smartness dimensions and its groups of
characteristics to evaluate smartness in cyber-
physical systems Kalluri et al. (2020).

• Contributing factors identification. The Inter-
national Risk Governance Council (IRGC) Gra-
ham et al. (2010) has suggested twelve factors
pertinent to emerging risks. For our analysis, we
include the seven most relevant factors: scien-
tific unknowns, loss of safety margins, positive
feedback, temporal complications, communica-

tion, information asymmetries, and malicious
motives and acts. These factors are directly
connected with autonomous systems. We ex-
clude the other five factors (varying suscep-
tibilities to risk, conflicts about interests, val-
ues and science, social dynamics, technologi-
cal advances, and perverse incentives) because
they are not related to the systemic nature of
a cyber-physical autonomous system. Rather,
they address geographical, political, societal,
regulative, and economic aspects, respectively.

• Contributing factors analysis. For different au-
tonomous systems, these factors may have dif-
ferent weights. Thus, analysis can be used to
add coefficients to the factors for a better eval-
uation.

• Scenario generation. The output will be a series
of what-if scenarios that can describe possible
futures on how the autonomous system might
develop. This will allow emergent risk iden-
tification through scenario analysis using the
“funnel model”, in which each identified fac-
tor contributes to a better understanding of the
possible future states of the system.

Figure 3 presents an approach for understanding
emergent risks in autonomous systems. The out-
put of the process can be used as input to the
general risk management process Purdy (2010) to
better understand the context of the risk.

5.2. A swarm-of-drones scenario

We analyze the emergent misbehavior in a swarm
of drones using the process in Figure 3. This anal-
ysis allows to look at misbehavior in autonomous
systems in a systematic way and can be used as a
guideline for improving risk assessment models.

5.2.1. System identification

The first step is to define the issue in the system for
which we are building the potential scenarios. We
then analyze the relevant threats of errors adding
up, following the smartness framework Kalluri
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et al. (2020). Within the “real-time feedback con-
trol” dimension, the erroneous state estimation
indicates that the system cannot identify false data
and report them on time (i.e., identification). This
means that the filtering algorithm fails to prevent
the attack (i.e., prevention). The false data in the
sensor signals shows the need for minimum failure
rates in sensors (i.e., safety). Within the “level of
automation” dimension, the false data indicates
the system’s inability to gather meaningful in-
formation (i.e., information collection). The erro-
neous state estimation shows that the false data in-
jection in several sensors suggests that the swarm
is not capable of managing its mission (i.e., self-
regulation). While erroneous control commands
indicate the inability of the drones to make logical
inferences (i.e., reasoning) and send safe control
inputs to actuators (i.e., decision-making). The
control system was not successful in understand-
ing its environment and identifying erroneous data
(i.e., sensing and context-awareness). Within the
“degree of cooperative control” dimension, the
state estimation is falsely affected by the opera-
tion of other interconnected components (i.e., co-
regulation). Within the “degree of integration”
dimension, we identify the issue of effective use
of resources (i.e., self-optimization) due to the
reliance of the system on a single-sensor input.
Figure 4 illustrates a scenario of an emergence
incident in a swarm of drones due to false data
injection Gu et al. (2021).

Fig. 4. False data injection threats linked to the frame-
work of smartness dimensions and characteristics.

5.2.2. Contributing factors identification and
analysis

The next step involves identifying the factors to
be analyzed for each issue to predict possible
future scenarios. Due to space limitations, we have
selected three of the identified characteristics (i.e.,
safety, identification, and decision-making) to be
mapped with their factors.

(1) In the context of false data, factors like “loss
of safety margins” and “positive feedback”
may have a greater impact on safety in a
swarm of drones due to multiple interactions
between non-linear drone systems.

(2) In the context of erroneous state estimation,
factors like “information asymmetries” and
“malicious motives” may contribute more to
identification due to vulnerable dynamics be-
hind the intentional undetected changes.

(3) In the context of erroneous control com-
mands, factors like “temporal complications”
and “communication” may have a greater ef-
fect due to temporal issues for changes in
system structure over time.

5.2.3. Scenario generation

For analyzing emergent misbehavior, it is essential
to predict the future states of the system based on
the possible changes in existing variables. Based
on the previous analysis, we provide some fu-
ture risk scenarios extrapolated from the identified
contributing factors. Some examples of scenarios
assessing the effects of changing input variables
are the following:

• S1: How would the errors be amplified from
their intended malicious values if the system is
non-linear?

• S2: How would the estimated state change
if a sophisticated threat agent acted stealthily
against the system?

• S3: How would the manipulated state variables
be affected if bad data detection was imple-
mented?

5.3. Comparative analysis

To address emergent risks in our context (i.e., a
swarm-of-drones), we qualitatively evaluated the
contributing factors using the four risk analysis
methods. A summary of the comparative analysis
of the pros and cons of each approach for predict-
ing emergent properties is shown in Table 1.

5.3.1. F1 - Scientific unknowns

Dealing with emergent misbehavior requires
preparing for unknown, unanticipated risks. The
term “scientific unknowns” includes the degree
of uncertainty arising from emergence due to
insufficient available information in risk analysis.
Therefore, the likelihoods of tractable unknowns
should be included in assessments.

The unified framework for risk analysis can
perform uncertainty analysis of causes and conse-
quence analysis addressing the uncertainties Aven
(2007). BBN provides good quantitative capabili-
ties based on Bayesian inference, which can iden-
tify conditions under uncertainty Fenton and Neil
(2018). However, there are methods (for example,
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STPA-SafeSec and FMEVA) that cannot handle
uncertainty or inaccuracy due to their qualitative
data nature.

5.3.2. F2 - Loss of safety margins

Due to increased interdependency and connectiv-
ity, systems are becoming more tightly coupled,
because the interactions among system compo-
nents are non-linear. A change in one component
can quickly have a strong impact on the related
components Perrow (2011). Therefore, the tight
coupling in a system leads to a loss of safety mar-
gins, increasing the likelihood of emergent risks.

To deal with complexity, STPA-SafeSec an-
alyzes not only system losses caused by sin-
gle components failures and/or threats, but
also analyzes the non-linear interactions among
the components. However, FMEVA deals with
component-based incidents only, without consid-
ering their interactions Erik Nilsen et al. (2018).
The unified framework for risk analysis uses event
and attack trees likely to describe likely failures
and threats in linear systems without considering
complex interactions. Similar, BBN cannot iden-
tify likelihoods of dependency relations between
system components Fenton and Neil (2018).

5.3.3. F3 - Positive feedback

Feedback loops are essential to the proper func-
tioning of systems. When positive feedback dom-
inates within a system by amplifying a pertur-
bation, this tends to be a destabilizing emergent
factor. Thus, it is important for analysts to identify
the feedback dynamics in system structure and
assess their function under different conditions.

Through the interaction of positive and negative
feedback loops, STPA-SafeSec can explain the
system dynamics related to changes in behavior
over time. However, some methods have limited
capacity for dynamic modeling of complex sys-
tems (for example, BBN and FMVEA). The uni-
fied framework for risk analysis also does not con-
sider dynamic analysis because it uses event and
fault trees that depend on their static nature Kriaa
et al. (2015). It should be noted that the dynamic
version of fault tree analysis could contribute sig-
nificantly.

5.3.4. F4 - Temporal complications

Anticipating how an emergent risk will evolve, the
time course can play a crucial role in the safe and
secure system operation. The risk profile needs to
address temporal issues.

The STPA-SafeSec provides a way to model
dynamic processes and deal with structural dy-
namics related to system structure changes over
time. But, the other methods (FMVEA, BBN,
and the unified framework for risk analysis) are
limited in the dynamic modeling of complex sys-
tems due to their static nature Kriaa et al. (2015).

For instance, the BBN model is obtained manu-
ally based on the analyst’s understanding of the
system, and needs to be reconstructed to model
different risk events or system changes.

5.3.5. F5 - Communication

Different types of communication, both external
and internal, are essential factors for assessing
emergent misbehavior. Besides the information
exchanged internally in the system, environmen-
tal influences can demonstrate how emergent
risks are amplified through external communica-
tion issues. To achieve effective communication
about emergent risks, the process of bottom-up
learning can be more useful than the top-down
approach. As Bonabeau (2002) says, traditional
top-down approaches fail to explain the behavior
of emergent phenomena. Since bottom-up is start-
ing from the local interactions of individuals to
conclude about the group behavior.

The unified framework for risk analysis uses
both forward and backward search methods Aven
(2007). A backward search, which is a top-down
approach, starts with the undesirable state and
identifies its causes. A forward search, a bottom-
up approach, starts from the component-based ini-
tiating events and uses them to develop scenar-
ios. BBN is characterized by bottom-up or di-
agnostic inference, aiming to determine the im-
pact of failures in low-level equipment or soft-
ware systems Fenton and Neil (2018). FMEVA
is an approach suitable for system design, focus-
ing on components, and can be used for early
analysis Erik Nilsen et al. (2018). However, top-
down approaches like STPA-SafeSec, while able
to examine control actions under different possi-
ble conditions, might lack detail because they fo-
cus on a conceptual mission Kaneko et al. (2018).

5.3.6. F6 - Information asymmetries

Autonomous decision-making enhances informa-
tion asymmetries, where useful information may
not be equally distributed among the system’s
parts. Systems with autonomous capabilities
that think by themselves but act collectively can
amplify an emergent risk’s likelihood or sever-
ity. Identifying and evaluating these asymme-
tries caused by failures or intentional concealment
should be considered in a risk assessment process.

However, STPA-SafeSec does not consider
elements with autonomous capabilities within
a system that might hide information (e.g.,
neural-network-based control software). Simi-
larly, FMVEA is unable to analyze systems with
learning capability due to their black-box na-
ture Erik Nilsen et al. (2018). BBN and the unified
framework for risk analysis can generate an uncer-
tainty assessment where the probabilities could be
conditioned based on the influence of information
partially available to attackers Aven (2007).



Proceedings of the 31st European Safety and Reliability Conference 389

Table 1. A comparison of risk analysis approaches with the contributing factors to assess the
emergence in an autonomous system.

Approach F1 F2 F3 F4 F5 F6 F7

STPA-SafeSec - ++ ++ ++ + - +
FMVEA - - - - + - +
BBN ++ - - - + + +
Unified framework for risk and vulnerability analysis ++ - - - ++ + +

Note: In Table 1, ++ (+, -) indicates that the particular method addressed thoroughly (addressed partially, did

not address) the corresponding emergence factor.

5.3.7. F7 - Malicious motives and acts

The growing use of ICTs and AI is leading
to increased emerging vulnerabilities to mali-
cious acts in autonomous systems Kaloudi and
Li (2020). The automation of the attack pro-
cess allows conducting attacks at a wider scope,
faster speed, and larger scale. Thus, risk processes
should consider both known and novel threats.

Methods like BBN and the unified framework
for risk analysis, which use probabilistic models,
have the potential to ignore conditions that have
a low probability Silva Castilho (2019). This as-
sumption of independence in estimations might
leave out stealthier threats. The STPA-SafeSec
does not adequately capture a potential attacker’s
view, focusing only on system vulnerability, with-
out analyzing threats leading to the activation
of unsafe control actions Kaneko et al. (2018).
Meanwhile, FMVEA considers only threats based
on the STRIDE model and how an individual com-
ponent could potentially be misused Erik Nilsen
et al. (2018).

6. Discussion
As systems are getting more interconnected with
more autonomous capabilities, undesirable emer-
gent behavior make failures and attacks more
broad and serious. Despite a significant amount
of research on ways to analyze and predict emer-
gent phenomena, there has been little research on
risk analysis of emergent misbehavior, especially
from the security point of view Husted and My-
ers (2014). Risk analysis can be a valuable tool
to support risk-based decisions for controlling or
eliminating emergent misbehavior. In particular,
emergence risk analysis can help (i) identify the
potential causes leading to consequences and/or
predict possible consequences from a cause, and
(ii) quantify the degree of risk associated with
the undesirable emergence. Consequently, the sys-
tem’s level of trustworthiness can be increased by
considering emergent risks in the risk manage-
ment process.

To help readers select the most appropriate
approach out of several risk causal analysis ap-
proaches, we selected the factors critical for as-

sessing emergence and evaluated their fulfillment
based on the literature findings. It is often difficult
to use conventional methods to determine causa-
tion between the source(s) of the emergent risk
and its consequences. These methods need to be
improved by better understanding the process, by
considering the systemic factors and the effects
of multiple initiating events on non-linear compo-
nent interactions, and by quantifying the impact of
the disruptions caused by different types of adver-
saries. We believe that the approaches identified
here can be used in a complementary manner to
better analyze emergent misbehavior.

7. Conclusion and future work
As a result of the integration of new technologies,
a system’s emergence characteristics can create
new types of risks called emergent risks, which
affect both the system and society. Therefore,
systems might face situations for which they are
unprepared, significantly compromising their se-
curity, safety, and resilience. This paper analyzes
the emergent risk concept and the pros and cons
of four risk causal analysis approaches for better
predicting future risks in autonomous systems. In
future work, we intend to apply the most promis-
ing risk analysis methods to a specific case in
order to compare their performance.
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