Binding Fault Logic to System Design: a SysML approach
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To gain the benefits of MBSA within MBSE, traditional fault logic models need to align closely to the system’s
functional decomposition. To achieve this in a consistent fashion, we have developed a new SysML safety profile
based on the functional blocks provided to us by system design. Functional deviations derived from the FHA (which
is modeled in SysML using the same profile) are propagated between blocks through ports defined by the system
engineers, and the associated fault logic (including hardware generated base events) is modeled in standard internal
block definition diagrams. Functional failures represent only part of the failure model (which will always include
events and scenarios outside the functional requirements), but it ensures that for functional deviations at least, fault
logic models follow the functional hierarchy and use the same design blocks as the system engineers. It means that
specification changes to functional blocks or ports can be picked up and flagged to the safety team as requiring
inspection, and it enables direct traceability within the SysML repository of derived safety requirements from the
PSSA / FHA through to the fault logic used to demonstrate acceptable mitigation of risk. We demonstrate the new
profile’s use in the context of a gas turbine control system design, and discuss the advantages and shortfalls it

provides in an industrial setting.
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1. Context

Traditional safety critical systems development
often has a gap between system design (carried
out as a requirements-based, functional decompo-
sition) and safety analysis (concerned with model-
ing hazards, hazard mitigation, fault propagation,
functional redundancy and other non-functional
risk). Despite these different viewpoints, model-
ing the failure modes of the system should ulti-
mately map back to the same understanding of the
functional specification used by the system engi-
neers. It is this common understanding that lay
behind early claims that model-based systems en-
gineering (MBSE) could act as a single repository
of design documents that could meet the needs of
both systems and safety engineers and reduce the
amount of duplicated or out-of-date documenta-
tion used during development (Micouin (2014)).
Unfortunately support for safety analysis in sys-
tem description languages such as SysML often
lagged behind the primary concerns of functional
specification and requirements capture (Biggs
et al. (2018)). While it is true that via bespoke
profiles SysML can be extended to model almost
anything, that does not mean all the development

processes will be able to fit coherently into a
single data repository. What we mean by this is
that being able to profile what you want to model
is not the same as being able to model what you
want from data defined and structured for another
purpose.

2. Background

Model Based Systems Engineering (MBSE) has
become the dominant paradigm in safety critical
systems development with claims that it brings
different modelling viewpoints and tool chains
under the umbrella of a single model repository
that forms the basis of all development and an-
alytical effort. MBSE isn’t tied to a particular
system or architecture description language, but
it has always targeted the needs of systems de-
velopment (Lisagor et al. (2011)). The references
listed here focus mostly on our own domain of
safety critical civil aerospace development. How-
ever, even within this restricted sector there are
several approaches based around particular lan-
guages: AltaRica (Boiteau et al. (2006), David
et al. (2009), Rauzy and Blériot-Fabre (2014)),
SCADE/Lustre (Joshi and Heimdahl (2005)), or
around a modeling environment such as Matlab
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Simulink (Shao, N. et al. (2017)) in combination
with other tools, such as HiP-Hops (Sorokos et al.
(2015)) or physical simulation environments such
as Modelica or Simscape (Schallert (2017), Shao,
N. et al. (2017)).

SysML is an extension of the Unified Modeling
Language (UML) that supports the specification,
analysis, design, verification and validation of a
broad range of systems. The intention is that a
well-defined specification can fully describe the
system, so that development and analysis can be
performed using tools that take their data from
a single source. Existing tool chains can be used
provided that one can export data from the repos-
itory. Unfortunately, while a graphical interface
for system modeling is supported by most tool
vendors, a similar environment for safety analysts
to model fault logic is rarely provided. Fault logic
is often modeled using fault trees that trace faults
from hardware failures (base events) to a top level
hazard (see industry standard IEC 61025:2006).

In 2017 the OMG requested suggestions on how
to represent fault trees in SysML as part of the
Safety and Reliability Analysis Profile for UML,
which will extend the SysML language with “the
capability to model safety information” (Biggs
et al. (2018)). As part of this, an early profile
for Fault Tree Analysis (FTA) and Failure Mode
and Effects Analysis (FMEA) has been developed
and published (Biggs et al. (2018)) and is likely
to form part of SysML 2.0. However, while the
new profile is welcome it won’t fit every com-
pany’s internal processes and modeling needs. For
example we have specific requirements at Rolls-
Royce to model engine dispatch availability (the
ability for an engine to carry a fault for a period of
time). Given the previous lack of SysML support
for fault logic modeling, it is not unexpected that
some companies have gone ahead and developed
safety profiles to fit their needs (see our previous
reports: Clegg et al. (2019a), Clegg et al. (2019b)).
The difficulty of trying to embed safety informa-
tion in a SysML functional model is also discussed
in Tanaka et al. (2020), with whom we have had
correspondence over some of the issues.

3. Paper structure

Our experience suggests that being able to repro-
duce existing fault logic models in SysML is of
little benefit in terms of improving the quality of
analysis or reducing its development cost. For us
to achieve those goals the fault logic models them-
selves had to fit more closely with the functional
decomposition created by the system engineers,
but even this can present difficulties. In order to
illustrate this we provide a brief real world exam-
ple in Section 4.1 of the step-by-step process of
matching a fault tree structure to a corresponding
functional decomposition. It should be noted these
difficulties from the redundancy failure modes of

a dual channel control system, as we describe in
section 4.3, not from any difficulty in developing
a bespoke profile that can capture fault logic in
SysML. Having outlined the problem, we sug-
gest an approach which restricts the fault logic
model held in SysML to that which can be tightly
aligned to the system’s functional decomposition
(Section 5). We give a brief overview of how the
profile enables better traceability from the Func-
tional Hazard Analysis (FHA) down to functional
deviations caused by hardware component failures
or events. Finally we discuss some of benefits
and shortcomings of the approach with respect to
quality and cost effectiveness (Section 6) and set
out conclusions in Section 7.

4. The traditional viewpoint

A typical fault propagation model may build up a
representation of failure logic based around func-
tional redundancy, loss of function or the failure of
some form of safety protection. In our case with
a dual channel FADEC (Full Authority Digitial
Engine Control), this means viewing the system
as suffering loss of function on the channel in
control. Loss of function (and functional devia-
tion) is not often part of a functional specification
except in a few specialized cases where protection
is designed as a functional feature.

Traditionally it was sometimes claimed that
having a separate failure model produced by the
safety engineers was an independent check that
bolstered the safety of the system. In MBSE, that
view has shifted in favor of gaining quality and
productivity advantages of the system develop-
ment team working from a single source of design
specification. To date, little evidence has been
produced that demonstrates the MBSE advantages
in this regard due to the issues of comparing like-
for-like projects over long time spans. The lack of
evidence with regard to process improvements and
cost reduction is not something we can address in
this paper, however our view is that quantifiable
process improvements as a result of shifting to
MBSE are hard to achieve over the lifetime of a
single project.

4.1. Adapting existing fault logic models
to fit within MBSE

Our previous work (Clegg et al. (2019b) modeling
traditional fault trees in SysML and exporting the
fault logic for analysis could be described as a suc-
cess. However, trying to integrate the ‘fragments’
of fault logic with functional specifications (in the
form of activity diagrams) was something we were
not able to resolve satisfactorily. In this section
we work through an example of this process, with
specific reference to the SysML modeling envi-
ronment at Rolls-Royce Controls. Some of the
issues were tool specific, but most are down to
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Screenshot of our Fault Tree Profile user interface in PTC Windchill Modeler (formerly known as PTC

Integrity Modeler, which is the version shown here) showing linking a ‘fault tree fragment’ to an associated diagram

(functional specification activity diagram).

structural differences between the failure model
and the system’s functional decomposition. Our
first example is taken from the UltraFan’s Variable
Stator Vanes (VSV) control and actuation system.
The second example (Section 5) is taken from
the ECOSIStem (Enabling Capability Of Software
Intensive Systems) project on a smaller engine,
with a slightly different SysML modeling standard
as explained in the text.

The variable stator vanes control the air flow
going into the turbine compression chamber, and
their response is critical in the case of events such
main shaft failure (shaft overspeed). There isn’t
space here to explain the detailed operation of the
vanes, but the existing failure model was typical
in that loss of function was modeled as loss of
redundancy (i.e. the loss of the VSV function on
both control channels). The functional specifica-
tion for the VSVs is only concerned with how
that function is implemented on either channel,
the channel switching control logic is handled
elsewhere. Our existing VSV fault trees had a
lot of additional failure logic based on functional
redundancy that was difficult to associate with the
functional specification. In order to gain a better
alignment, it became clear we would need to come
up with a new ‘channel neutral’ failure model of
the VSVs that focused on the failure modes of the
function itself and removed issues of functional
redundancy (so they could be modeled elsewhere).

4.2. Matching fault tree fragments with
activity diagrams

The rationale behind attempting a channel neutral
version of the VSV feature is to see whether the

fault logic can be modeled so that fragments of the
fault tree can be usefully associated with the cor-
responding part of the functional specification. In
UltraFan this would be an activity diagram, while
in ECOSIStem it would be an internal block dia-
gram. Although it is possible to do this within the
modeling tool (PTC Windchill Modeller) using a
linked association (see Fig. 1, where the user right
clicks on the fault tree fragment to access ‘Open
related’” menu option). This is a weak association,
in effect no more than a hyperlink. It does not
have a formal connection in the model defined by
a profile that could be used to check things like
model consistency or verification of failure modes
for system components.

But even with this weak association, trying to
create a coherent model where fault logic is dis-
played alongside the corresponding functionality
was difficult. The fault tree profile used a bespoke
diagram type in order to display the fault logic’s
graphical format. This made it difficult to match
‘levels’ of functional hierarchy of the activity dia-
grams with fragments of a fault tree (these would
correspond to ‘pages’ in an analytical tool like
Reliabilty WorkBench’s FaultTree+). But naviga-
tion also proved an issue. Fault logic fragments
sometimes straddled separate activity diagrams,
or a single activity diagram might require several
fault tree ’pages’ to be associated with it. This
ended up being confusing for users. To try and il-
lustrate this without going into detailed functional
explanations, we walk through a brief example
of the fault propogation path ‘jumping’ across a
functional boundary as a user descends the func-
tional hierarchy.
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Fig. 2. Decomposition of the functional specification for Control Vane Position activity diagram (left) and its
corresponding fault logic represented as fault tree fragments (right)
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Fig. 3. Simplified view of the functional decomposition (LHS) and fault logic (RHS) in Fig 2. The red line shows
how fault propagation jumps across the vertically defined functional hierarchy (shown by the blue boundaries).

4.3. Decomposing the VSV function

The Rotate High Pressure Chamber (HPC) VSVs
control function is composed of Control Vane Po-
sition and Actuate Vane Position. Looking at the

fault logic associated with the former we can start
to deconstruct the fault logic model so that the
fragments correspond to the functional decompo-

sition (Fig. 2).

In this case, both the activity diagrams speci-
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fying the functional decomposition and the Minor
Loop is the lowest decomposition that the system
engineers will go to (after this it is passed onto
software or physical implementation). However,
the fault logic needs to trace the failure as far
as the base events generated by the hardware.
Initially, this means it needs to trace why the
vane demand was set erroneously high, due to
the validated VSV position having been given as
erroneously low, i.e. the failure stems from the
vane position being not where the system claims it
is. But which part of the functional decomposition
does this failure mode relate to?

If we trace the fault logic through the functional
hierarchy, the matching function below is not from
any internal blocks to Control Vane Position. The
function that traces that fault from VSV:POSV LO
(vane position low) is associated with Validate Ac-
tuator Position, which is a component of Actuate
Vane Position and ultimately part of Rotate HPC
VSV.

To see how the lower levels of the VSV:
Low Speed Stop (LSS) fault logic cuts across
functional boundaries, we can draw a simpli-
fied tree showing hierarchical levels in the func-
tional decomposition on the left and the associated
branches of fault logic (as fault tree fragments -
only the top gate name is shown) on the right
(Fig. 3). The abbreviations refer to the slightly
fuller names given in Fig. 2. The colors show our
attempt to match the levels, and while not all the
sub fault tree fragments can be shown, the linkage
in red shows how descending the failure logic to
the base event jumps across a functional boundary
between Actuate and Control Vane Position. This
means a system engineer who wants to trace the
failure logic associated with their system function
can’t just follow the functional decomposition.

The situation is further complicated when we
have a system function (such as a fuel shut off
valve) whose functional deviance can lead to sev-
eral different hazards. In the case of our rotate
variable stator vane function above, the fault logic
for VSV: High Speed Stop (HSS) is also asso-
ciated with the same functional block as VSV:
LSS, even though their respective hazards are con-
cerned with different phases of flight. In practice,
as a user descends the functional decomposition
and attempts to associate fault tree fragments with
functional blocks, you quickly build a list of as-
sociated fault tree fragments that belong to either
VSV:HSS or VSVILSS, and in some cases where
base events are shared, to both.

Unfortunately in PTC Windchill Modeller the
context of a fault tree fragment cannot be shown
in a menu item and it is difficult to know which
fault logic diagram feeds into which from the list
of associated diagrams. If we accept the utility
of linking fault logic to functional models as a
worthwhile objective, we need a way to correlate
branches of the fault logic model to their corre-

sponding functional blocks, regardless of how the
decomposition is organized or whether the fault
logic ignores functional boundaries.

The original idea behind MBSE was for all
modeling and analysis to be done using a sin-
gle data repository, thus avoiding engineers using
different versions of specifications and divergent
designs. However, achieving alignment with the
system model requires not just a restructuring of
the fault logic to match the functional decompo-
sition, we also need a way to organize and group
the fault logic models, as the parts that correspond
to the functional specification are only fragments
of a much larger, richer failure model. Without
some guiding principle of organization, the se-
mantically shallow associated diagram hyperlink
defeats some of the gains made by bringing the
system and safety models into closer alignment,
as it could result in confusion about which parts
of the failure logic are associated with which func-
tion. In order to gain the benefits of a single model
data source, we needed a better approach to tie to-
gether fault logic and functional decompositions.

5. How to bind fault logic to design
specification

We have already covered the removal of failure
logic for functional redundancy so that we could
focus the failure model on functional failures or
deviations. But as explained above, having two
separate model views (both held in SysML) was
confusing for users to navigate and associate. It
made future scripting for model verification more
complex and didn’t solve the issues of having
to maintain two models in parallel. The linkage
between system specification (activity diagrams in
this case) and fault tree fragments was no more
than a hyperlink association.

The SysML safety profile on the ECOSIStem
small engine project took a different approach. It
started by providing support for the FHA, both
in terms of capture and export of the analysis
into tables. The decision was made to embed the
FHA within the system design and stakeholder
requirements documents at an early stage and
unlike the SysML fault tree profile for UltraFan,
there was no requirement to support existing tool
chains or being limited to activity diagrams. This
gave the safety team freedom to create a simple
profile based on integrating safety analysis fea-
tures into functional specification documents on
internal block definition diagrams (ibds). The pro-
file defines relationships between hazards, failure
modes, functional failures / deviations and some
high level failure logic. At the FHA level some
fault logic is modeled (mostly to give context to
the hazard), and fault propagation is represented
by attaching functional failures to the ports on
function block properties. For reasons of space,
we have decided only to include a representative
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Fig. 4. An early snapshot of the FHA for Automatic Ground Start

example of part of the FHA (see Fig 4) covering
automatic ground start. There is a level above
this that links with the use case stakeholder re-
quirements and hazard log. However, our focus
here is on the lower level functional specification
documents, and how we integrate the fault logic
with these, eventually tracing up to the FHA.
Most system designs start with a description of
the system architecture that is relatively abstract
and which becomes more detailed towards the
physical implementation. In ECOSIStem, this is
done using logical and physical architectural lay-
ers. The FHA starts at the high level logical views,
but continues the fault propagation through the
logical decompositions into the physical architec-
ture and functional grouping of specific hardware
components. Although the original FHA safety
profile wasn’t intended to model fault propagation
down to the level of hardware units, and it contains
none of the specialist support for certain fault tree
analyses such as engine dispatch, at this stage
during its development we are more concerned
with the primary requirement that the fault logic
can be tightly bound to the design documents.
This will restrict what can be modeled, and we
discuss some of the shortfalls of the approach in

Section 6.

A typical fault logic model for the Servovalve
component specified the VSV’s physical architec-
ture is shown in Fig 5. We have omitted the prop-
erty tags that define unique codes for each failure
mode from the Failure Mode Effects and Analysis
(FMEA) database (this is maintained externally to
the SysML model). What is important to note here
is that this ibd for the Servovalve block property is
not one created by the safety team. This is part
of the physical component architecture defined
by system design. The safety engineer takes an
instance of this block and enhances it with fault
logic information. The ports are also pre-defined
by system design, and the functional failures that
propagate between blocks are added in a similar
fashion. This process ensures that the fault logic
is created within a function block provided by
system design using the correct port definitions.
If changes are made by the system engineers to
the port or block specification, those changes will
show up on the fault logic block instance as well.

Scripts can be used to verify that all failure
modes input to a gate or port, and that all func-
tional failures trace to a top level hazard. This
mechanism for storing the fault logic associated
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Fig. 5.

Internal fault logic of the Variable Vane Servovalve ibd, showing both control channels inputs, OR / AND

gates and failure modes (purple blocks providing inputs to gates). The input and output ports map functional failures

between component blocks.

with functional deviations flowing down from the
FHA means that the system engineers have ac-
cess to the fault logic and failure modes of any
function they wish to inspect. They can visually
trace where the functional failures come from and
propagate to (although we hope to extend this
functionality with scripts) and there is none of the
difficulty associated with trying to navigate two
models that decompose in different ways with re-
spect to functional boundaries. Here, the function
block is the ‘wrapper’ for its associated fault logic.

6. Quality assessment

While this gives an overview of the modeling side,
clearly the fault logic still has to be exported for
analysis by a tool like RWB FaultTree+. The need
for export made us consider the possibility that
parts of the fault logic model should either sit out-
side the system’s functional decomposition (such
as library components for common hardware) or
outside the SysML model altogether (which is
the case for some third party component suppliers
who provide the fault logic and failure modes for
their products). Given that there will always be
parts of the failure model that would not be held in
SysML alongside the functional decomposition,

the export of SysML fault logic model will be
part of process of ‘stitching together’ fault logic
from different sources before the full model is
imported into the analytical tool. For an engine
FADEC like that at Rolls-Royce, the vast majority
of fault logic is concerned with capturing and
tracing the functional deviations highlighted in the
FHA. What remains (Common Cause Analysis,
zonal analysis, non-functional hazards such fuel
leaks or lightning strike) can be incorporated at
a later stage in SysML if there is an advantage
in doing so. However, as we have demonstrated,
trying to incorporate or associate two differently
layered models alongside one another can result
in confusion for users, an increase in cost and no
discernible improvement in quality.

Although we cannot provide hard evidence, we
are convinced that embedding the majority of the
FADEC fault logic inside the system’s functional
specification will bring significant developmental
improvements. The single biggest cost factor for
safety analysis is having to rework fault logic
models and analysis due to changes in system
specification. If MBSE can provide a tightly inte-
grated environment for MBSA, then much of the
duplicated effort or rework can be avoided. There
are also ’soft’ benefits associated with greater vis-
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ibility for system engineers to check failure modes
and fault logic associated with their functional
specification. For example, changes to data acqui-
sition and validation can have immediate impact
on the failure modes of components that use them
and this is much easier to see when the functional
deviations are part of the system design blocks.

7. Conclusions and future work

Our ongoing work to model fault logic within
the SysML system specification is far from com-
plete. We started out demonstrating that existing
fault tree models could be captured in SysML,
but failure models have a much wider scope than
functional decompositions and we failed to take
into account the practical considerations of model
alignment. By starting from the system design
blocks and limiting the fault logic to the prop-
agation of functional failures, we were able to
achieve much tighter integration with system de-
sign and start to realize some of the benefits of
MBSE for safety analysis. There remains part of
the failure model that can’t be incorporated into
the functional decomposition in a useful way. This
is not to say it can’t be modeled in SysML, but
consideration needs to be given to the value and
cost of moving it into that format, given the likeli-
hood that the full failure model will be composed
from different sources anyway before analysis.
We hope to explore modeling non-functional haz-
ards such as fire risk or leaks in fuel-hydraulic
systems, but these won’t be as tightly bound to
the system specification and the cost savings for
re-working the safety analysis are less obvious.
Overall, our aim is to find an ‘optimal’ integration
of safety processes into SysML, so that quality is
improved and errors between systems and safety
engineers are reduced, but which avoids adding
process complexity of little value.
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