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Infrared spectroscopy is a widely used technology for nondestructive testing of materials. We propose a novel
approach to automatically and simultaneously analyze a dataset of infrared spectra. They are modeled by linear
combinations of peaks whose shape and position are parametrized. The observed data consist of linear combinations
of the time-discretized peaks with an additive noise. In order to recover the peak parameters, common to all the
dataset, and the associated amplitudes, which are specific to each spectrum, we formulate a penalized non-linear
optimization problem. In this context, the penalization ensures that the spectra are recovered using a sparse set of
common peaks.
Due to the non-convex nature of the problem and the continuous nature of the parameters, a resolution via standard
procedures is out of reach. Therefore, we propose an off-the-grid algorithm with alternating convex optimization
updates (to estimate the amplitudes of the peaks) and non-convex steps (to estimate the location and the scale of the
peaks). In practice, this gives satisfactory results and provides sparse solutions.
We also study the numerical performances of the algorithm on simulated data and on real infrared spectra. The latter
come from polychloroprene rubbers used in a marine environment at different aging levels. Eventually, we use a
clustering algorithm in order to identify the peaks corresponding to the chemical components involved in the aging
process of this material.
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1. Introduction
Infrared spectra measure the interaction of in-
frared radiations with the matter. They reveal the
presence of chemical substances or functional
groups in solid, liquid or gaseous forms. This
information on the composition of the matter is es-
sential to prevent failures of materials. Therefore,
the use of spectroscopy has become widespread
in the industry for nondestructive testing. When
a large number of spectra are to be analyzed, an
automatic procedure is required. In this paper,
we propose a procedure to automatically iden-
tify anomalous aging processes of polychloro-
prene rubbers in contact with sea water. Principal
component analysis or its variants such as the
partial least square analysis are often performed
on a large dataset of spectra but produce results
that are difficult to analyze physically. The spec-
tra have many peaks, each peak corresponding
to the absorption of an infrared radiation by a
chemical compound. Each peak is characterized
by its width, its location and its amplitude. The
larger the amplitude of the peak, the more con-
centrated the chemical compound in the material.
Several physical phenomenons imply that these
peaks have a shape and a width that depend on

the chemical substance (Hollas (2004)). When it
comes to complex materials, the analysis of a
spectrum may require some expertise. It involves
determining the location and the width of overlap-
ping peaks that are difficult to distinguish. In this
case, the use of a numerical method is necessary.
We model the peaks using Gaussian functions (the
use of Lorentz functions is also common) and
then compute the parameters from the observed
spectra. In order to estimate the parameters of
the model, curve fitting algorithms are commonly
used: it amounts to solve a non linear least square
problem as in Aragoni et al. (1995) or Antonov
and Nedeltcheva (2000). However, the optimiza-
tion techniques involved for such ill-conditioned
problems require an initialization close to the real
values of the parameters of the model. A first
guess on the location of peaks and the number of
peaks in the model is usually necessary. It would
be preferable to have automated procedures allow-
ing to get rid of a prior knowledge of the stud-
ied material such as in Alsmeyer and Marquardt
(2004) or Kriesten et al. (2008). In order to give a
physical sense to each parameter, it is essential not
to over-parametrize the model by adding too many
peaks to fit the spectra, particularly in the presence
of noise. For this reason, we introduce in this
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paper estimators that are solutions of a penalized
optimization problem similar to the problem that
can be found in Golbabaee and Poon (2020). The
penalization favors sparse solutions. Our choice of
penalization and the fact that our analysis is run
simultaneously on spectra ensures that the spectra
are recovered using a sparse set of common peaks.

This work uses recent advances in optimization
and statistics to extract physically motivated fea-
tures from a dataset of infrared spectra observed
with an additive noise. Note that our approach
does not rely on any prior information on the
material being studied. Finally, let us stress that
the method presented here can be extended to all
peak-shaped models and in particular to numerous
branches of spectroscopy.

2. Definitions and Notations
Let d ≥ 1 be the dimension of the space Θ ⊂ R

d

of peak parameters. Let ϕ be a positive smooth
function defined on Θ× R modeling the shape of
peaks. We denote by T ∈ N the size of the dis-
cretization grid over a wavenumber interval. For a
discretization scheme on the real line (σj)1≤j≤T ,
we set ΔT = (σT − σ1)/T . For f, g measurable
functions defined on R, we set:

〈f, g〉T = ΔT

T∑

j=1

f(σj)g(σj),

and also ‖f‖T = 〈f, f〉1/2T . We assume that
‖ϕ(θ)‖T is non zero for all T ∈ N and θ ∈ Θ.
We also define the normalized function φT on Θ
taking values in R

T by:

φT (θ) = ‖ϕ(θ)‖−1
T (ϕ(θ, σ1) · · ·ϕ(θ, σT )) .

Let K ∈ N
∗. For ϑ = (θ1, . . . , θK) ∈ ΘK , we

define the function ΦT on ΘK taking its values in

R
K×T by ΦT (ϑ) =

(
φT (θ1)

�, · · · , φT (θK)�
)�

.
When there is no risk of confusion, we write Φ and
φ instead of ΦT and φT , respectively.

3. The Model
In this paper, we model infrared spectra using
linear combinations of parametric functions ϕ
(called peaks) with an additive noise. The para-
metric functions can be Gaussian or Lorentz func-
tions, as usually done in the literature, see Hollas
(2004). The location and the width of a peak are
specific to a chemical group whereas its amplitude
which encodes the concentration of the group de-
pends on the material. Here we lead our study with
Gaussian peaks:

ϕ : Θ ⊂ R
2 → L2(R)

(μ, ν) 	→ e−
(·−μ)2

2ν2 ·
(Gauss)

Consider a data set of n spectra (yi)1≤i≤n disc-
tretized on T wavenumbers (σj)1≤j≤T , then write
for all 1 ≤ i ≤ n, 1 ≤ j ≤ T :

yi(σj) =
K∑

k=1

B�
i,k

ϕ(θ�k, σj)

‖ϕ(θ�k)‖T
+Wij . (1)

In model (1), (Wij)1≤i≤n,1≤j≤T denote the
random variables modeling the noise, assumed
to be independent Gaussian variables with
zero-mean and variance s2. The row vectors
(B�

i,.)1≤i≤n ∈ R
K
+ of the matrix B� have their

kthcoordinate encoding the amplitude of the kth

peak involved in the linear combination. The pos-
itivity of their entries is physically motivated by
the fact that spectra can only take positive values.
The peaks are shared by all the spectra in the
dataset but their amplitudes are specific to each
spectrum. Note that each spectrum individually
may have only a few peaks with non zero am-
plitudes. We denote by K an upper bound of the
number of peaks which can be arbitrarily large.
Since the family of Gaussian functions (ϕ(θ))θ∈Θ
is linearly independent, the spectra decomposition
is unique.

The model (1) can be written in matrix form:

Y = B�Φ(ϑ�) +W,

where Y ∈ R
n×T , Yij = yi(σj), W ∈ R

n×T ,

B� ∈ R
n×K
+ , ϑ� = (θ�1 , . . . , θ

�
K). One can no-

tice that applying the same permutation on the
columns of B� and the coordinates of ϑ� gives
the same model. It amounts to change the order
of the peaks in the linear combinations of (1). The
matrix B� and the K-uplet ϑ� are defined up to
such a joint permutation.

The spectra are expected to be decomposed in a
small number of active peaks, that is why the ma-
trix B� is sparse and have numerous zero entries.
Moreover, they are expected to have similarities so
that only a few peaks are used to model the whole
dataset. Hence, the matrix B� have many columns
set to zero. We denote by S� the indices of the non
zero columns of B� which feature the active peaks
in the dataset:

S� = {k, there exists 1 ≤ i ≤ n,B�
ik �= 0}.

Thus, the peaks ϕ(θ�k) whose index k does not
belong to the set S� play no role in the model. We
denote by ϑ�

S� the restriction of ϑ� to coordinates
whose indices belong to S�.

4. Optimization Problem
In this section, we retrieve the non linear parame-
ters ϑ�

S� (encoding the active peak), as well as the
linear parameters B� (encoding the amplitudes of
peaks) that fully describe the model. We formulate
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a program similar to the group-Lasso problem for
sparse linear models introduced in Yuan and Lin
(2006) and discussed in many papers since then
(Lounici et al. (2011), Obozinski et al. (2011)).
We generalize it to a larger range of sparse models
in the same way as Boyer et al. (2017) and more
recently as Golbabaee and Poon (2020). This leads
to a non-linear least square problem with a penal-
ization term weighted by a real parameter λ > 0:

min
B ∈ R

n×K
+

ϑ ∈ ΘK,T (h)

1

nT
‖Y −BΦ(ϑ)‖22 + λ‖B‖1,2, (2)

where,

• ‖ · ‖2 is the usual Euclidean norm and

‖B‖1,2 =
K∑

k=1

‖B·,k‖2 is the mixed (1,2)-norm,

• ΘK,T (h) ⊂ ΘK with h > 0, is the set of
parameters ϑ = (θ1, · · · , θK) ∈ ΘK such that
for all 1 ≤ 	, k ≤ K, 	 �= k:

KT (θ�, θk) :=
|〈ϕ(θ�), ϕ(θk)〉T |
‖ϕ(θ�)‖T ‖ϕ(θk)‖T

< h.

Let (B̂(λ), ϑ̂(λ)) be solution of the problem (2)

(or simply (B̂, ϑ̂) when there is no ambiguity). We

denote by ϑ̂Ŝ the restriction of ϑ̂ to coordinates
whose indices belong to:

Ŝ = {k : there exists 1 ≤ i ≤ n, B̂ik �= 0}.
The set Ŝ gathers the indices of the active peaks
used to fit the spectra. The penalization used in
model (2) promotes group sparsity in the sense
that it favors a matrix B that has columns with
zero entries. This leads to solutions that use fewer
peaks while correctly approximating the data. We
refer to Obozinski et al. (2011) and Lounici et al.
(2011) to better understand the penalization pro-
cedure in the case where the parameters ϑ� are
known (but S� is unknown). We also enforce the
positivity of the linear parameters with constraints

on the entries of the matrix B̂.
The set ΘK,T (h) introduced in this paper corre-

sponds to a separation criterion on the peaks used
to fit the data, the separation being measured by
h. Provided that h is small enough, the matrix

Φ(ϑ̂)Φ(ϑ̂)� is of full rank. This is for example
the case if h < 1/(K−1), thanks to Gershgorin’s

theorem. This implies then that B̂ is the unique
solution of the problem:

min
B ∈ R

n×K
+

1

nT

∥∥∥Y −BΦ(ϑ̂)
∥∥∥
2

2
+ λ‖B‖1,2,

which amounts to minimize a strictly convex func-
tion over a convex set. The value chosen for h is a

compromise: it must be large enough to estimate
overlapping peaks in the dataset but sufficiently
small to make the model identifiable in terms of
the linear parameters. The identifiability for lin-
ear parameters is crucial to give them a physical
sense.

5. Algorithm

5.1. Presentation of the algorithm
The resolution of the optimization problem (2) is
not an easy task at first glance since the optimiza-
tion problem is non-convex. Indeed, the peaks
are not even convex in terms of their parame-
ters. A brutal gradient-descent would be hopeless
without a very good initialization. In this paper,
we want to proceed without any prior knowledge
on the parameters to be estimated. It might be
tempting to use a grid on the space of non-linear
parameters describing the peaks and use sparse
methods to retrieve the amplitudes as suggested
in Tang et al. (2013). But, the approximation of
the spectra would depend on the chosen grid. Typ-
ically, it would be impossible to recover exactly
the parameters of a peak without an infinitely thin
grid. That is why an off-the-grid algorithm which
does not discretize the parameter space must be
preferred. Thus, it will be possible to recover ex-
actly the parameters of the peaks provided their
overlap is low (characterized by the parameter
h). Recent progress in optimization have shown
the efficiency of off-the-grid procedures such as
the sliding Franck-Wolfe iterations (see Denoyelle
et al. (2019)) or the alternating descent conditional
gradient method (see Boyd et al. (2017)). Both
algorithms are based on the addition of a new peak
at each iteration to approximate one spectrum.
During an iteration, a new peak is placed, then all
the parameters are re-estimated with an improved
initialization. The work of Golbabaee and Poon
(2020) extended the Franck-Wolfe algorithm to
fit several spectra simultaneously. We propose a
variant of the Sliding Franck-Wolfe algorithm, see
Algorithm 1 below, that separates the optimization
of linear and non-linear parameters and which
merges peaks that are highly overlapping. This
allows the use of classical algorithms to solve a
standard group-Lasso problem for linear parame-
ters. Hence, this approach takes advantage of the
fact that linear parameters are often more numer-
ous than non linear parameters (n×K v.s d×K)
and always much easier to compute.

Let us write for any matrix B ∈ R
n×m and

ϑ ∈ Θm,

Fλ,ϕ(B, ϑ) =
1

nT
‖Y −BΦ(ϑ)‖22 + λ‖B‖1,2.

Remark 5.1. In the Sliding Franck-Wolfe algo-
rithm as introduced in Denoyelle et al. (2019),
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Algorithm 1:
Data: Y
Input: ϕ, λ, h
Output: ϑ,B
Initialize: i := 0, R(0) := Y , ϑ(0) := ∅
while i < K do

θ(i+
1
2 ) ∈ argmax

θ∈Θ

∥∥∥R(i)φ(θ)�
∥∥∥
2

2

ϑ(i+
1
2 ) =

(
ϑ(i), θ(i+

1
2 )
)
// Adding

new peak

B(i+ 1
2 ) ∈ argmin

B∈Rn×(i+1)
+

Fλ,ϕ(B, ϑ(i+
1
2 ))

// Linear step

ϑ(i+1) ∈ argmin
ϑ∈Θi+1

Fλ,ϕ(B
(i+ 1

2 ), ϑ)

initialized in ϑ(i+
1
2 )

// Non-linear step

Merging routine (ϑ(i+1), h)
// Merging overlapping
peaks and adding peaks
with parameters chosen at
random

B(i+1) ∈ argmin
B∈Rn×(i+1)

+

Fλ,ϕ(B, ϑ(i+1))

// Re-estimation of linear
parameters

R(i+1) = Y −B(i+1)Φ(ϑ(i+1))
i = i+ 1

end

Algorithm 2: Merging routine
Input: (θ1, . . . , θm), h
Output: (θ1, . . . , θm)
while (θ1, . . . , θm) /∈ Θm,T (h) do

for 1 ≤ � < k ≤ m do
if KT (θ�, θk) > h then

θk is chosen at random in the
parameter space

end
end

end

the peaks are never merged and therefore the re-

estimation of linear and non-linear parameters in
Algorithm 1 can be done simultaneously. Splitting
into two steps avoids a gradient descent on all the
parameters simultaneously.

5.2. Implementation details
We used a L-BFGS-B algorithm for the linear
and the non linear steps. This algorithm allows
the addition of constraints. Typically, peaks that
are too thin to appear between two discretization
points or wide peaks covering the whole range of
observation should not be taken into account in
the optimization. One can take 2ν > ΔT so that
a peak has a significant contribution on the dis-
cretization points. As for an upper bound on ν, one
can take for the Gaussian model 6ν < σT − σ1
so that a Gaussian function at the center of the
observation range puts at least 99% of its mass
between σ1 and σT . It is also legitimate to require
that the location parameter μ belongs to the range
of observations i.e.: σ1 ≤ μ ≤ σT .

Without any prior information on the overlap-
ping of the peaks, it may be necessary to re-run

the algorithm and decrease h until one gets Φ(ϑ̂)
of full rank.

6. Numerical Applications

6.1. Simultated data
We tested the Algorithm 1 on noisy spectra com-
posed of at most 15 Gaussian peaks. We gener-
ated a set of n = 10 spectra within the range
σmin = 0 to σmax = 20. The parameters location
μ and scale ν of the 15 Gaussian peaks were
chosen at random according to a uniform distri-
bution on the parameter space (5 ≤ μ ≤ 15 and
10 ·ΔT ≤ ν ≤ T ·ΔT

6 ). We considered a Gaussian
noise on the spectra by adding at each point of
the discretization independent and identically dis-
tributed Gaussian random variables of mean 0 and
standard deviation s ∈ {0, 0.01, 0.1, 0.5} (see
Figure 1). In order to show the consistency of
the method, we computed for the different values
of s, the mean square error between the data re-
constructed with the estimated parameters and the
data without noise,

MSE∗ =
1

nT
‖B�Φ(ϑ�)− B̂Φ(ϑ̂)‖22.

The estimated parameter (B̂, ϑ̂) depends on the
penalization parameter λ taken in the optimiza-
tion problem (2). We took for λ the orders of
magnitude that lead to the optimal convergence
rates in the case of linear models as shown in
Lounici et al. (2011) (λ ∼ s/

√
nT ) and we

took λ = 0.01/
√
nT for s = 0. The values of

MSE∗ from Figure 2 show that we managed to
reconstruct almost exaclty the spectra in less than
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100 iterations of the algorithm when s ≤ 0.01.

Fig. 1. Representation of the simulated data with dif-
ferent noise levels (s ∈ {0, 0.01, 01, 0.5}).

Fig. 2. Evolution of MSE∗ over the iterations of the
algorithm for different noise levels.

6.2. Aging of polychloroprene rubbers
6.2.1. Presentation of the dataset

The data used in our study were obtained from
spectroscopic analysis of samples of polychloro-
prene rubbers, one side of which was in contact
with seawater and the other was glued to steel.
The device to obtain the spectra is a Fourier-
transform infrared spectrometer in Attenuated To-
tal Reflectance (ATR) mode. The spectra, visual-
ized in a graph of infrared light absorbance on the
vertical axis vs. wavenumbers on the horizontal
axis, have to be normalized for the quantitative
analysis of peak amplitudes. In addition, a pre-
processing is also performed to remove the base-
lines present on the spectra. The multiplicative
normalization is specific to each spectra and such

that its peak amplitude for the C − Cl bond sit-
uated at 825 cm−1 is equal to 1. The C − Cl
bond was chosen for the normalization of the
spectra because of its stability with respect to the
aging process, see Le Gac et al. (2012). It is then
possible to compare the peak amplitudes between
the spectra in the dataset (see Figure 3).
The 72 spectra composing the dataset are dis-

Fig. 3. Representation of all the infrared spectra of
polychloroprene samples after normalization and re-
moval of baselines.

cretized between 4000 cm−1 and 600 cm−1 with
measures every 2 cm−1. We focus our analysis on
the area between 2000 cm−1 and 600 cm−1 where
are the biggest dissimilarities between the spectra.

6.2.2. Aging properties of polychloroprene
rubbers

Polychroroprene is often used in marine struc-
ture to prevent corrosion. Some works on poly-
chloroprene rubbers in marine environments have
brought out some physical phenomenons that oc-
cur with aging (see Le Gac et al. (2012), Tchalla
et al. (2017)). The sea water diffuses into the
material until it is saturated. During the process,
several reactions might appear. In Le Gac et al.
(2012), the authors have pointed out the hydrol-
ysis of silica fillers. It consists in a formation
of silanol from the silica fillers. This reaction
is reflected in the spectra by a decrease of the
1160− 1082 peaks (attributed to the Si−O bond
of the silica filler) and a new peak located around
1009 cm−1(attributed to Si − OH) that rises
according to the aging duration. In addition, they
showed that a carbonyl formation can occur due
to an oxidation reaction. This can be seen in the
spectra by the appearance of a new peak at 1731
cm−1. In Tchalla (2017), peaks in spectra from
polychloroprene samples with aging conditions
similar to those in our study are attributed to their
corresponding chemical bond (see Table 1).
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Table 1. Table of the location of peaks and their
corresponding bonds for the polychloroprene samples.
The values are taken from Tchalla (2017).

Wavenumbers (cm−1) Peak assignment

3690-3400-3364 -OH
3200-3014

2952-2920-2850 ν − CH2, CH3 Aliphatic

1731 ν − C = O

1647 ν − C = C of HC = CH2

1540 ν − C = C
of R− CR = CH −R
and δ − CH2 Aliphatic

1419 δ − CH2, δ − CH Aliphatic

1160-1082 ν − Si−O (SiO2)

1009-909 ν − Si−O (Si−OH)

825 C − Cl

664 CH Aromatic

6.2.3. Estimation of linear and non linear
parameters for the peak-shaped model

In the optimization problem (2) of Section 4, the
penalization parameter λ must be tuned. Intu-
itively, choosing a large value for λ will make the
term of penalization in (2) preponderant and set

a lot of entries of the matrix B̂ to zero. In this
case, one expects the solutions to underestimate
the number of peaks in the model. On the contrary,
a small value for λ will set very few entries of

the matrix B̂ to zero and will lead to overestimate
the number of peaks in the model. There is no
easy way to choose the penalization parameter λ.
To achieve a compromise between the number of
peaks used and the quality of the spectra approx-
imation,we ran the algorithm on the set of poly-
chloroprene spectra for different values of the tun-
ing parameter λ. It appeared that for the Gaussian
model, around λ ≈ 5·10−5, the unpenalized mean

square error F0,ϕG
(B̂(λ), ϑ̂(λ)) as well as the pe-

nalized mean square error Fλ,ϕG
(B̂(λ), ϑ̂(λ)) in-

crease drastically (see Figure 4). From this point,
the number of peaks used to fit the data drops
(see Figure 5). Hence, a reasonable choice for
λ, is under this critical point. We ran the Algo-
rithm 1 with the Gaussian model (ϕ := ϕG) for
λ = 3 · 10−5 and h = 0.9. We imposed that the
location parameter belongs to the range of ober-
vations [600cm−1, 2000cm−1], and that the width

parameter ν belongs to [ΔT

2 ≈ 1, TΔT

6 ≈ 233].
Finally, we obtained 66 active peaks for the whole
dataset in the range [600cm−1, 2000cm−1] after
100 iterations of the algorithm.

Fig. 4. Mean square error F0,ϕ(B̂(λ), ϑ̂(λ)) and pe-

nalized mean square error Fλ,ϕ(B̂(λ), ϑ̂(λ)) seen as
functions of λ.

Fig. 5. Number of peaks found by the algorithm to fit
the spectra of polychloroprene samples as a function of
the tuning parameter λ.

6.2.4. Boxplots for main peak amplitudes

To understand the distribution of the peak ampli-
tudes within the dataset, we represented them on
Figure 6 with boxplots. The locations of peaks
on the x-axis as well as the amplitude values in
the boxes, correspond to those estimated by Algo-
rithm 1. For the sake of readability, we have rep-
resented only the ten most significant peaks (those
with the biggest sum of squared amplitudes). First,
one can notice that Algorithm 1 retrieves peaks
close to those referenced in Table 1: the carbonyl
peaks at 1732 cm−1 (vs 1731 cm−1 in the Table
1) as well as the silica peaks at 1162−1089 cm−1

(versus 1160 − 1082 cm−1 in Table 1) and the
silanol peaks at 1012 − 917 − 902 cm−1 (versus
1009−909 cm−1 in Table 1). Secondly, it appears
that the silanol peak brings the most dissimilarity
among the spectra.
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Fig. 6. Boxplot for the amplitudes of the 10 most
significant peaks for the 72 polychloroprene spectra in
the dataset.

6.2.5. Clustering on peak amplitudes

In order to bring out different levels of ag-
ing among the spectra, a clustering algorithm
such as a k-means algorithm whose inputs
are the vectors of estimated peak amplitudes

B̂i,. ∈ R
K , 1 ≤ i ≤ n can be used. The k-means

algorithm aims to partition the n observations
vectors into M sets A = {A1, · · · ,AM} so as
to minimize the within-cluster sum of squares. It
amounts to solve

min
A

M∑

�=1

∑

i∈A�

∥∥∥B̂i,. − β�

∥∥∥
2

2

where the vectors β� are the centroids of the

sets (A�)1≤l≤M . Let us write (Â1, · · · , ÂM ) the
partition returned by a k-means algorithm and

(β̂1, ...β̂M ) the associated centroids.
The number of clusters is an input of the al-

gorithm. Therefore, one of the first issue to ad-
dress is related to the number of clusters used.
A compromise must be found between gathering
the data in a few groups and not having too much
dissimilarity within the group. To tackle this issue,
solving the k-means problem for different values
of M can be useful. We plotted in Figure 7 the
value I(M), as a function of M , of the sum of
squared distances of the observations to their clos-
est cluster centroid:

I(M) =
M∑

�=1

∑

i∈Â�

∥∥∥B̂i,. − β̂�

∥∥∥
2

2
.

By taking M = 4 where the curve makes
an elbow, we separate the data into a number
of clusters small enough to be informative while

Fig. 7. Sum of squared distances of observations to
their closest cluster centroid with respect to the numbers
of clusters.

having drastically reduced the sum of squared dis-
tances between observations and their associated
centroid (see Figure 8). Let us observe that among

Fig. 8. Representation of the polychloroprene spectra
within their cluster after running a k-means algorithm
on the row vectors B̂i,. ∈ R

K , 1 ≤ i ≤ n.

the four clusters, one gathers about 70% of the
data (top right hand graphic in Figure 8). One can
also notice that the clusters at the top in Figure
8), gathering more than 90%, are characterized
by lower amplitudes for the silanol peak at 1009
cm−1. The spectrum that forms a single-point-
cluster presents strong carbonyl peaks centered
around 1731 cm−1. Hence, we managed to iso-
late a spectra that presents a really high level
of carbonyl and separate the others with respect
to the amplitudes of the silanol and silica peaks
without any prior information on the material. Let
us recall that the rise of the silanol and carbonyl
peaks correspond to reactions involved in the ag-
ing process. We also considered the clusters based
on the amplitudes of the peaks corresponding only
to silica, silanol and carbonyl by selecting the
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peaks returned by the algorithm that are located
at less than 10 cm−1 of the positions referenced
in the Table 1. The clusters obtained correspond
exactly to those from Figure 8. Therefore, one can
conclude that the main differences between the
spectra are due to the peaks of carbonyl, silanol
and silica which were identified in the literature as
involved in the aging process of polychloroprene
rubbers in a marine environment. The two clusters
at the bottom of Figure 8 gather spectra with
chemical characteristics of higher aging levels and
represent less than 10% of the data.

7. Conclusion
This paper estimates an arbitrary number of in-
frared spectra simultaneously without any prior
information. The spectra are modeled under the
physical constraints by linear combinations of
peaks and each peak belongs to a nonlinear para-
metric family of functions (e.g. Gaussian). The
estimation consists in a generalization to nonlinear
models of the group-Lasso optimization problem.
This formulation allows to limit the number of
peaks used to fit the data. A numerical method is
proposed with an off-the-grid scheme. The limited
resolution problems, intrinsic to the use of a grid
on the parameter space, are thus avoided. The
method is numerically consistent in the presence
of noise and favors sparse solutions. Although the
problem is nonlinear, the method works without
any special care for the initialization. Moreover,
the computation time behaves well with a large
number of spectra as long as the number of peaks
to fit the data does not increase drastically. The-
oretical guarantees for the consistency of the pa-
rameter estimators will be the subject of a further
study. We apply this approach to real data of poly-
chloroprene rubber spectra, and recover the main
peaks associated with its chemical components
and identify by clustering those involved in its
aging process. The locations of the peaks found by
the algorithm are consistent with those established
by previous work in the field of chemistry. Next,
we plan to develop procedures to detect anoma-
lous spectra and to quantify the uncertainty of an
estimated spectrum using confidence bands.
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