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An insurance contract implies that risk is ceded from ordinary policy holders to companies. Companies do the same

thing between themselves, and this is known as reinsurance. The problem of determining reinsurance contracts

which are optimal with respect to some reasonable criterion has been studied extensively. Different contract types

are considered such as stop-loss contracts where the reinsurance company covers risk above a certain level, and

insurance layer contracts where the reinsurance company covers risk within an interval. The contracts are then

optimized with respect to some risk measure, such as value-at-risk or conditional tail expectation. In the present

paper we investigate this problem further and show that the optimal solution depends on the tail hazard rates of the

risk distributions. If the tail hazard rates are decreasing, which is the case for heavy tailed distributions like lognormal

and pareto distributions, the optimal solution is balanced. That is, reinsurance contracts for identically distributed

risks should be identical insurance layer contracts. However, if the tail hazard rate is increasing, which is the case

for light tailed distributions like truncated normal distributions, the optimal solution is typically not balanced. Even

for identically distributed risks, some contracts should be insurance layer contracts, while others should be stop-loss

contracts. In the limiting case, where the hazard rate is constant, i.e., when the risks are exponentially distributed, we

show that a balanced solution is optimal. We also present an efficient importance sampling method for estimating

optimal contracts.
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1. Introduction

When a client buys an insurance contract, risk is

ceded from the client to the insurance company.

When the client is an insurance company, referred

to as the cedent, this is known as reinsurance.
Typically, reinsurance is applied either to very

large single risks or to a portfolio of risks. Even

the largest companies do this as a part of their

diversification strategy, and financially the cedent

may be just as strong as the reinsurer.

The problem of determining reinsurance con-

tracts which are optimal with respect to some

reasonable criterion has been studied extensively

within actuarial science. Different contract types

are considered such as stop-loss contracts where
the reinsurer covers risk above a certain level,

and insurance layer contracts where the reinsurer
covers risk within an interval. The contracts can

then be optimized with respect to some risk mea-

sure such as value-at-risk or conditional tail ex-

pectation. In the univariate case, i.e., when only a

single risk is reinsured, solutions to several vari-

ations of the optimization problem can be found

in Cheung et al. (2014). In particular, it is shown

that if value-at-risk is used as risk measure, the

optimal contract is known to be an insurance layer

contract. Some other recent works in this area are

Lu et al. (2013), Cong and Tan (2016), and Chi

et al. (2017).

The topic of the present paper is the multi-

variate case where the cedent has multiple risks

which cannot be bundled together into a portfolio.

Instead the risks must be covered by separate

reinsurance contracts. In this case the problem of

finding optimal contracts is more difficult. More

specifically, we consider the case where value-at-

risk is used as risk measure. Since an insurance

layer contract is known to be optimal with this

risk measure, we focus on such contracts. The

risks covered by the reinsurer are characterized

by intervals. This means that for each contract we

have two parameters corresponding to the bounds

of these intervals. Thus, if m is the number of

contracts, we have an optimization problem with

a total 2m parameters. In principle, it is possible

to find the optimal parameters numerically. How-

ever, since the computational order of the opti-
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mization problem typically grows exponentially

in the number of parameters, the computational

complexity of the optimization soon becomes very

large.

In Huseby and Christensen (2020), it was

shown that optimal solutions must satisfy certain

conditions. These conditions simplify the opti-

mization problem significantly. In the present pa-

per, we apply these conditions and show that the

optimization problem can be expressed as an opti-

mization problem with justm variables subject to

a single constraint. Expressed in terms of a trans-

formed set of variables the constraint is approx-

imately linear, and the optimal solution depends

on the shape of the upper and lower contour sets of

the expected reinsurance cost. When these sets are

convex, optimal solutions can be found efficiently

using Lagrange optimization. On the other hand,

when the upper contour sets are convex, optimal

solutions will be located at the boundary of the set

of feasible contracts.

1.1. Value-at-risk

Since value-at-risk plays an important part in the

present paper, we review some basic properties of

this risk measure which will be needed later on.

The risk measure will typically be defined relative

to some random variable X . The cumulative dis-

tribution function of X is denoted by FX(x) =

P (X ≤ x). We also introduce the survival func-

tion SX(x) = P (X > x) = 1− FX(x).

The α-level value-at-risk associated with the

risk X is given by S−1
X (α) defined as follows:

S−1
X (α) = inf{x : P (X > x) ≤ α}. (1)

If SX is strictly decreasing, it is easy to show that:

S−1
X (α) = r if and only if

P (X > r) ≤ α ≤ P (X ≥ r). (2)

In particular, when SX is strictly decreasing, the

following holds true:

If P (X > r) = α, then S−1
X (α) = r. (3)

It is well-known that the value-at-risk function

has the property that for any strictly increasing

continuous function φ we have:

S−1
φ(X)(α) = φ(S−1

X (α)) (4)

2. Multivariate reinsurance contracts

In this section we consider the problem of op-

timizing insurance contracts in the multivariate

case. Thus, we letX1, . . . , Xm bem non-negative

random variables representing the risks from m

business linesa. To avoid technical issues we as-

sume that X = (X1, . . . , Xm) is absolutely

continuously distributed, and that SXi
is strictly

decreasing, i = 1, . . . ,m.

All risks are reinsured using insurance layer
contracts. That is, for i = 1, . . . ,m we introduce:

Ri(Xi) =

⎧⎪⎪⎨
⎪⎪⎩

0 for Xi < ai

Xi − ai for ai ≤ Xi ≤ bi

bi − ai for Xi > bi

(5)

where ai < bi are positive constants. As a result,

the retained risks covered by the cedent, denoted

Ii(Xi) = Xi −Ri(Xi), i = 1, . . . ,m, are:

Ii(Xi) =

⎧⎪⎪⎨
⎪⎪⎩

Xi for Xi < ai

ai for ai ≤ Xi ≤ bi

Xi − (bi − ai) for Xi > bi
(6)

The price paid by the cedent for the ith contract is

denoted by πXi
, and is assumed to be of the form:

πXi
= (1 + θ)E[Ri(Xi)], i = 1, . . . ,m.

where θ > 0 represents the risk premiums charged

by the reinsurance company for handling the

risksb. The total risk covered by the cedent is then:

m∑
i=1

Ii(Xi) + (1 + θ)
m∑
i=1

E[Ri(Xi)].

By Eq. (4) the resulting total α-level value-at-risk,

denoted Vα, is given by:

Vα = S−1∑m
i=1 Ii(Xi)

(α) + (1 + θ)

m∑
i=1

E[Ri(Xi)].

aNote that the risks X1, . . . , Xm are not assumed to be
independent at this stage.
bFor more sophisticated non-linear premium principles see

Bühlmann (1980) and Furman and Zitikis (2007)
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Fig. 1. The sets A, B and C.

We observe that Vα consists of two terms. We

refer to the first term,

S−1∑m
i=1 Ii(Xi)

(α)

as the retained risk term, while:
m∑
i=1

πXi = (1 + θ)

m∑
i=1

E[Ri(Xi)]

is referred to as the premium term. The main
objective now is to find a1, b1, . . . , am, bm so that

Vα is minimized.

We then let x = (x1, . . . , xm) and introduce

the following sets which corresponds to different

scanarios of the retained risk term:

A = {x :

m∑
i=1

Ii(xi) <
m∑
i=1

ai}, (7)

B = {x :
m∑
i=1

Ii(xi) =
m∑
i=1

ai}, (8)

C = {x :

m∑
i=1

Ii(xi) >

m∑
i=1

ai}. (9)

These sets are illustrated for the case where

m = 2 in Figure 1. Note that the subset B also
includes the boundary of the rectangle as well as

the borderline between A and C. Moreover, since
we have assumed that SXi are strictly decreasing

for all i, it follows that P (X ∈ B ∪ C) and
P (X ∈ C) are strictly decreasing in ai for all i.

In Huseby and Christensen (2020) the follow-

ing important result was provenc:

Theorem 2.1. Assume that a∗1, b
∗
1, . . . , a

∗
m, b∗m

are optimal contract parameter values, and that

P (

m⋂
i=1

Xi > a∗i ) ≥ α. (10)

Then the following conditions must hold true:

a∗i = S−1
Xi

(
1

1 + θ
), i = 1, . . . ,m, (11)

and:

P (X ∈ C) = α. (12)

If more information about the joint distribu-

tion of X1, . . . , Xm is available, it is possible to

simplify the condition Eq. (10). In particular, if

X1, . . . , Xm are positively upper orthant depen-
dent (see Shaked (1982)), i.e.,

P (
m⋂
i=1

Xi > ai) ≥
m∏
i=1

P (Xi > ai)

for all a1, . . . , am , then in particular:

P (
m⋂
i=1

Xi > a∗i ) ≥
m∏
i=1

SXi
(a∗i ) = (1 + θ)−m.

Hence, in this case a sufficient condition for

Eq. (10) to hold is that:

(1 + θ)−m ≥ α. (13)

Note that the condition Eq. (13) is satisfied

whenever the risk premium charged by the rein-

surance company, i.e., θ, is not too large. If this

condition is not satisfied, the cedent has little or
nothing to gain, and should not buy a reinsurance

contract.

Note also that independence is a special case

of positively upper orthant dependence. Thus,

the condition Eq. (13) covers the case where

X1, . . . , Xm are independent as well.

cStrictly speaking the result from Huseby and Christensen

(2020) was formulated for the case with independent risks,

in which case the condition Eq. (10) can be expressed more

explicitly as Eq. (13). However, in the proof only the general

condition given here was applied.
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Obviously, the condition Eq. (11) uniquely de-

termines the optimal values for a1, . . . , am. Fur-

thermore, by Theorem 2.1 the optimization prob-

lem can be reformulated as an optimization prob-

lem with respect to the remaining unknown con-

tract parameters b1, . . . , bm subject to a single

constraint:

Theorem 2.2. Assume that a∗1 . . . , a
∗
m, given by

Eq. (11), satisfies Eq. (10). Then the remaining
optimal contract parameters b∗1, . . . , b

∗
m can be

found by solving the following optimization prob-
lem:

Minimize:
m∑
i=1

E[Ri(Xi)] (14)

Subject to: P (X ∈ C) = α (15)

with respect to b1, . . . , bm.

Proof: We start out by noting that the constraint

Eq. (15) is the same as the condition Eq. (12).

Thus, by Theorem 2.1 this constraint is justified.

Furthermore, by the definition of the set C given
in Eq. (9), the constraint Eq. (15) can be written

as:

P (

m∑
i=1

Ii(Xi) >
m∑
i=1

a∗i ) = α

Then, by Eq. (3) it follows that under the con-

straint Eq. (15), the retained risk term is given by:

S−1∑m
i=1 Ii(Xi)

(α) =
m∑
i=1

a∗i .

Hence, the resulting total α-level value-at-risk be-

comes:

Vα =

m∑
i=1

a∗i + (1 + θ)

m∑
i=1

E[Ri(Xi)]

From this it follows that minimizing Vα is equiva-

lent to minimizing
∑m

i=1 E[Ri(Xi)] subject to the

constraint Eq. (15) with respect to b1, . . . , bm �
We observe that according to Eq. (11), the opti-

mal values a∗1, . . . , a
∗
m satisfies:

SX1
(a∗1) = · · · = SX1

(a∗m) = (1 + θ)−1

We let A denote this common probability, i.e.,

A = (1 + θ)−1. In the following it is also con-

venient to introduce new variables:

Bi = SXi(bi) = P (Xi > bi), i = 1, . . . ,m,

and solve the optimization problem with respect

to B1, . . . , Bm instead of b1, . . . , bm. Denoting

the optimal values by B∗1 , . . . , B
∗
m we can of

course find the corresponding optimal values for

b1, . . . , bm by:

b∗i = S−1
Xi

(B∗i ), i = 1, . . . ,m.

2.1. Handling the constraint

In this subsection we will explain how to deter-

mine the set of Bi-values satisfying the constraint

Eq. (15). Before we do this, however, we note that:

P (X ∈ C) ≤ P (
m⋃
i=1

Xi > bi) ≤
m∑
i=1

Bi

Since B1, . . . , Bm typically are small numbers

(e.g., 0.01), this upper bound is often quite good.

This means that the constraint is approximately

linear in B1, . . . , Bm, at least for a moderately

sized m. In the next section this property will be

illustrated by numerical examples.

An easy way to handling the constraint Eq. (15)

is by using Monte Carlo simulation. Assuming

that we have generated N samples X1, . . . ,XN

from the distribution ofX , we can estimate pC =

P (X ∈ C) for given values of B1, . . . , Bm, by

computing the resulting fraction of samples in the

set C. The valuesB1, . . . , Bm can then be adjusted

so that this fraction becomes equal to the desired

value α. If N is large, we obtain a stable estimate

of pC . A challenge with this approach, however, is
that the event {X ∈ C} has a small probability
of occurring. Hence, most of the simulations will

be waisted on parts of the sample space which are

not affected by the Bis. Thus, using this approach

N needs to be quite large in order to obtain stable

results.

In order to improve the precision, we assume

that we can find a set D such that C ⊂ D for

all relevant values of B1, . . . , Bm, and such that

pD = P (X ∈ D) is known. Moreover, we let
pC|D = P (X ∈ C|X ∈ D). Since C ⊂ D, we get
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Fig. 2. D′ = {u : 1−Δ < ui < 1, i = 1, 2}

that:

pC = pC|D · pD.
We then generate N samples X1, . . .XN from

the conditional distribution of X given that X ∈
D, and estimate pC|D by:

p̂C|D =
1

N

N∑
k=1

I(Xk ∈ C)

The resulting estimate of the unconditional prob-

ability pC is then given by:

p̂C = p̂C|D · pD.

We assume thatX1, . . . ,XN are generated by

transforming independent variables U1, . . . ,UN :

Xk = ψ(Uk), k = 1, . . . , N,

where ψ is strictly increasing in each argument,

and where the variablesU1, . . . ,UN are sampled

uniformly from the set D′ given by:
D′ = {u : 1−Δ < ui < 1, i = 1, . . . ,m}.

Figure 2 shows D′ for the case where m = 2. We

may think ofU1, . . . ,UN as variables distributed

uniformly on [0, 1]m, but sampled from the condi-

tional distribution restricted to the set D′.
Finally, we let:

D = {x = ψ(u) : u ∈ D′}.

The quantity Δ is chosen as small as possible but

still large enough so that C ⊂ D. The specific
value ofΔ depends on the joint distribution ofX ,

but in most casesΔ = 2α works fine.

Sampling U1, . . . ,UN uniformly from D′ is
not difficult to accomplish, but we skip the details

here. Furthermore, the transformation ψ can be

constructed from the inverse distribution functions

and inverse conditional distribution functions of

X1, . . . , Xm. It is straightforward to verify that

this ensures thatX1, . . . ,XN become distributed

according to the conditional distribution of X

given that X ∈ D as claimed. As a result the

stability of the probability estimates are greatly

improved.

2.2. The objective function

We then consider the objective function given in

Eq. (14), and let fXi
denote the density ofXi, i =

1, . . . ,m, which we denote by:

Φ =

m∑
i=1

Φi =

m∑
i=1

E[Ri(Xi)]

where we for i = 1, . . . ,m have:

Φi = E[Ri(Xi)] =

∫ bi

ai

(x− ai)fXi
(x)dx

+ (bi − ai)P (Xi > bi)

=

∫ bi

ai

xfXi
(x)dx

+ biP (Xi > bi)− aiP (Xi > ai).

Φ1, . . . ,Φm and hence also Φ can easily be

calculated as functions of B1, . . . , Bm using nu-

merical integration. Alternatively, it is possible to

estimate these functions by using Monte Carlo

simulation.

To get a better overview of the possible so-

lutions to the optimization problem, we intro-

duce the superlevel and sublevel sets of the ob-

jective function Φ expressed in terms of B =

(B1, . . . , Bm). That is, we let:

L+
c (Φ) = {B ∈ [0, 1]m : Φ(B) ≥ c}

L−c (Φ) = {B ∈ [0, 1]m : Φ(B) ≤ c}
The sets L+

c (Φ) and L−c (Φ) are referred to as
respectively the superlevel and sublevel sets of the



348 Proceedings of the 32nd European Safety and Reliability Conference (ESREL 2022)

function Φ relative to the level c. A function is

said to be quasiconvex if all its sublevel sets are
convex, while a function is said to be quasicon-
cave if all its superlevel sets are convex. See Boyd
and Vandenberghe (2004).

The following result provides sufficient condi-

tions for quasiconvexity and quasiconcavity of Φ:

Proposition 2.1. If Φ1(B1), . . . ,Φm(Bm) are
convex functions, then Φ is a quasiconvex function
of B. If Φ1(B1), . . . ,Φm(Bm) are concave func-
tions, then Φ is a quasiconcave function of B.

Proof: To prove the first claim, we assume that

Φ1(B1), . . . ,Φm(Bm) are convex functions, and

let B(j) = (B
(j)
1 , . . . , B

(j)
m ) ∈ L−c (Φ), j = 1, 2.

In order to show that L−c (Φ) is convex, we must
show that for any λ ∈ [0, 1], we also have that

B = λB(1) + (1− λ)B(2) ∈ L−c (Φ).
SinceΦ1, . . . ,Φm are convex, we know that for

i = 1, . . . ,m we have:

Φi(λB
(1)
i + (1− λ)B

(2)
i )

≤ λΦi(B
(1)
i ) + (1− λ)Φi(B

(2)
i )

Hence, we get that:

Φ(B) = Φ(λB(1) + (1− λ)B(2))

=
m∑
i=1

Φi(λB
(1)
i + (1− λ)B

(2)
i )

≤
m∑
i=1

λΦi(B
(1)
i ) + (1− λ)Φi(B

(2)
i )

= λΦ(B(1)) + (1− λ)Φ(B(2))

≤ λc+ (1− λ)c = c.

Thus, we conclude that B ∈ L−c (Φ), i.e., L
−
c (Φ)

is convex. The second claim is proved in a com-

pletely similar way �

Using the expressions for Φ1, . . . ,Φm it is easy

to see that we have:

∂Φi

∂bi
= P (Xi > bi), i = 1, . . . ,m. (16)

We can also derive the partial derivatives with

respect to B1, . . . , Bm, which are given by:

∂Φi

∂Bi
= − Bi

fXi
(S−1

Xi
(Bi))

, i = 1, . . . ,m. (17)

A function is convex if its partial derivative is

increasing. Thus, Φi is convex if:

− Bi

fXi
(S−1

Xi
(Bi))

is increasing in Bi.

or equivalently if:

fXi
(S−1

Xi
(Bi))

Bi
is increasing in Bi.

We then substitute Bi = SXi
(x). Since Bi is

a decreasing function of x, it follows that Φi is

convex if:

fXi
(x)

SXi
(x)

is decreasing in x.

Similarly, it follows that Φi is concave if:

fXi
(x)

SXi(x)
is increasing in x.

We recognize the ratio fXi
(x)/SXi

(x) as the haz-
ard rate of the distribution of Xi. The following

theorem summarizes these findings:

Theorem 2.3. If the risks X1, . . . , Xm have de-
creasing hazard rates, then Φ is a quasiconvex
function of B. If X1, . . . , Xm have increasing
hazard rates, then Φ is a quasiconcave function
of B.

3. Numerical examples

In this section, we will illustrate the results from

the previous section by presenting a few examples.

Only bivariate cases will be considered here, i.e.,

m = 2, and we let α = 0.01 and θ = 0.2. The

examples are illustrated with plots showing iso-

curves for the objective function Φ, and constraint

curves. The iso-curves are calculated using nu-

merical integration, while the constraint curves are

calculated using the importance sampling method

explained in Subsection 2.1 with N = 1000000

simulations.

In the first example, we let X1 and X2 be

independent and Pareto distributed with mean 50

and standard deviation 70. The Pareto distribution

has a decreasing hazard rate. Thus, it follows from

Theorem 2.3 that Φ is quasiconvex, and hence,

that the sublevel sets are convex. Figure 3 shows

iso-curves for the objective function Φ along with

the constraint curve. The iso-curves clearly show
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that indeed the sublevel sets are convex. The con-

straint curve is bending slightly away from the

origin. The optimal combination of B1 and B2

is the point of the constraint curve where the

objective function is smallest. From the figure

it is evident that this corresponds to a balanced
solution, i.e. a solution where B1 = B2. De-

tailed calculations yield the solution (B∗1 , B
∗
2) =

(0.0051, 0.0051). The corresponding solution for

the bis is (b
∗
1, b

∗
2) = (294, 294).

As long as the constraint curve is either approx-

imately linear or slightly bending away from the

origin, a balanced solution will always be optimal

when X1 and X2 have the same distribution and

this distribution has a decreasing hazard rate. This
even includes the case where X1 and X2 are ex-

ponentially distributed, even though the isocurves

are linear in this case. The reason for this, is that

the constraint curve is bending slightly away from

the origin in the exponential case as well, and thus,

touches the isocurve for the minimal value at a

unique point, which by symmetry will correspond

to a balanced solution.

B1

B2

Fig. 3. Constraint and Iso-contours where X1 and

X2 are Pareto distributed with mean 50 and standard
deviation 70.

In the second example, we letX1 andX2 be in-

dependent and truncated normally distributed with

mean 50 and standard deviation 30. The truncated

normal distribution has an increasing hazard rate.

Thus, by Theorem 2.3 Φ is quasiconcave, and

hence, that the superlevel sets are convex. Figure

4 shows iso-curves for the objective function Φ

along with the constraint curve. We observe that

the superlevel sets are indeed convex, while the

constraint curve is approximately linear. In this

case, optimal solutions will be found at the bound-

ary of the set of possible values. By symmetry,

there will be two optimal solutions, one where

B1 = 0 and B2 is between 0.01 and 0.0125, and

another where B2 = 0 and B1 is between 0.01

and 0.0125. Detailed calculations yield the two

solutions (B∗1 , B
∗
2) = (0, 0.011) and (B∗1 , B

∗
2) =

(0.011, 0). The corresponding solutions for the bis

are (b∗1, b
∗
2) = (∞, 127) and (b∗1, b

∗
2) = (127,∞).

As long as the constraint curve is either ap-

proximately linear or slightly bending against the

origin, a strongly unbalanced solution like the one

above will always be optimal when X1 and X2

have the same distribution and this distribution

has an increasing hazard rate. Such cases include
e.g., Gamma distributions with shape parameters

greater than one, as well as Weibull-distributions

with shape parameters greater than one.

Note that in such cases Lagrange optimization

will produce a solution where the objective func-

tion is maximized. Thus, by using this method, we
will end up with the worst possible solution.

B1

B2

Fig. 4. Constraint and Iso-contours whereX1 andX2

are truncated normally distributed with mean 50 and
standard deviation 30.

In the final example, we let X1 and X2 be in-

dependent and Pareto distributed, both with mean

50. In this case, however, the standard deviation
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of X1 is 60, while the standard deviation of X2 is

40. The objective function Φ is still quasiconvex,

and the sublevel sets are convex. Figure 5 shows

iso-curves for the objective function Φ along with

the constraint curve. The constraint curve is once

again bending slightly away from the origin. Since

the two risks have different distributions, the op-

timal combination of B1 and B2 is not balanced.

Still, it corresponds to a unique point where the

constraint curve touches an iso-curve. The exact

location of the point can be found either by La-

grange optimization, or by a simple search along

the constraint curve. Detailed calculations yield

the solution (B∗1 , B
∗
2) = (0.0066, 0.0036). The

corresponding solution for the bis is (b
∗
1, b

∗
2) =

(250, 268).

Note that since B∗1 is almost twice as large as
B∗2 , the risk X2 gets a much better reinsurance

coverage than the risk X1. The reason for this

is that since the standard deviation of X2 is less

than the standard deviation forX1, it is cheaper to

reinsure X2 than X1.

B1

B2

Fig. 5. Constraint and Iso-contours where X1 is

Pareto distributed with mean 50 and standard deviation
60, while X2 is Pareto distributed with mean 50 and
standard deviation 40.

4. Conclusions and further work

In the present paper, we have seen how multi-

ple reinsurance contracts can be optimized with

respect to value-at-risk. In particular, we have

proved that the optimal solution depends on

monotonicity properties of the hazard rates of

the risk distributions. We have also presented an

efficient simulation method based on importance

sampling. The proposed methodology is illus-

trated by some numerical examples.

Future work in this area includes optimization

with respect to other risk measures and objective

functions, how to handle dependent risks, as well

as a study of how the results may change when

the risk distribution parameters are subject to un-

certainty.
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