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An insurance contract implies that risk is ceded from ordinary policy holders to companies. However, companies
do the same thing between themselves, and this is known as reinsurance. The problem of determining reinsurance
contracts which are optimal with respect to some reasonable criterion has been studied extensively within actuarial
science. Different contract types are considered such as stop-loss contracts where the reinsurance company covers
risk above a certain level, and insurance layer contracts where the reinsurance company covers risk within an interval.
The contracts are then optimized with respect to some risk measure, such as value-at-risk or conditional value-at-
risk. In the present paper we consider the problem of minimizing conditional value-at-risk in the case of multiple
stop-loss contracts. Such contracts are known to be optimal in the univariate case, and the optimal contract is easily
determined. We show that the same holds in the multivariate case, both with dependent and independent risks. The
results are illustrated with some numerical examples.
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1. Introduction

In general, insurance is purchased in order to re-
duce the risk of large losses, where the insurer will
cover certain losses. The party that hedges against
such losses will normally pay a risk premium for
this protection, typically a fraction of the expected
value of the insurer’s cost. The same practice is
common among insurance companies. When an
insurance company buys insurance for a part of an
insurance contract from another company, this is
known as reinsurance. We refer to the party which
hedges against losses by purchasing reinsurance
as the cedent. The cedent purchases reinsurance
from the reinsurer.
The problem of determining reinsurance con-

tracts which are optimal with respect to some
reasonable criterion has been studied extensively
within actuarial science. Different contact types
are considered such as stop-loss contracts and in-
surance layer contracts. The contracts can then be
optimized with respect to some risk measure such
as value-at-risk or conditional value-at-risk. In the

univariate case, i.e., when only a single risk is
reinsured, solutions to several variations of the op-
timization problem can be found in Cheung et al.
(2014). In particular, it is shown that if value-at-
risk is used as risk measure, the optimal contract
is an insurance layer contract, while if conditional
value-at-risk is used, the optimal contract is a stop-
loss contract. Some other recent work in this area
are Lu et al. (2013), Cong and Tan (2016), and Chi
et al. (2017).
The topic of the present paper is the case where

the cedent has multiple risks which cannot be bun-
dled together. Instead the risks must be covered by
separate reinsurance contracts. This problem was
considered in Huseby and Christensen (2020) for
the case where value-at-risk was used as risk mea-
sure. It was shown that optimal solutions must sat-
isfy certain conditions. These conditions simplify
the optimization problem significantly. Huseby
(2022) applied these conditions and proved that
the optimization problem can be expressed as an
optimization problem with just n variables subject
to a single constraint.
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In the present paper, we consider the case where
conditional value-at-risk is used as risk measure.
This risk measure can be viewed as a limiting case
of a generalized version of this measure. We show
that except for the limiting case, the generalized
conditional value-at-risk measure behaves similar
to the value-at-risk measure. In particular, optimal
insurance layer contracts can be found using the
same methods as presented in Huseby and Chris-
tensen (2020) and Huseby (2022). The optimal
solution for the conditional value-at-risk measure
can then be obtained as a limit of insurance layer
contracts. In particular, we show that this limit can
be chosen to be a stop-loss contract. The methods
are illustrated by numerical examples.

2. Risk measures

In this section we introduce the risk measures we
will use in this paper. The risk measures will typ-
ically be defined relative to some random variable
X . In order to avoid technical issues we only
consider non-negative risks with finite expecta-
tions. The cumulative distribution function ofX is
denoted by FX(x) = P (X ≤ x). We start out by
reviewing some basic properties of value-at-risk.
The α-level value-at-risk associated with the

risk X , denoted V aRα(X), is defined for 0 ≤
α ≤ 1 as the α-percentile of the distribution of
X . Thus, V aRα(X) = F−1

X (α), where:

F−1
X (α) = inf{x : P (X ≤ x) ≥ α}. (1)

If FX is strictly increasing, it is easy to show that:

V aRα(X) = r if and only if

P (X < r) ≤ α ≤ P (X ≤ r). (2)

In particular, for FX strictly increasing, the fol-
lowing holds true:

If P (X ≤ r) = α, then F−1
X (α) = r. (3)

It is well-known that the value-at-risk function has
the property that if a > 0, then:

V aRα(a ·X + b) = a · V aRα(X) + b (4)

We observe that V aRα(X) does not include
information about the right hand tail of the dis-
tribution of X beyond the α-percentile. From a
risk management point of view the tail area is

often of interest. A risk measure which includes
more tail information is the α, β-level conditional
value-at-risk, denoted CV aRα,β , and defined for
0 ≤ α < β ≤ 1 by:

CV aRα,β(X) =
1

β − α

∫ β

α

V aRp(X) dp

=
1

β − α

∫ β

α

F−1
X (p) dp (5)

By Eq. (4) it follows that we also have:

CV aRα,β(aX + b) = aCV aRα,β(X) + b (6)

for all a > 0. Moreover, by substituting p =

FX(x), we obtain the following alternative ex-
pression for CV aRα,β(X):

CV aRα,β(X) =
1

β − α

∫ F−1
X (β)

F−1
X (α)

x dFX(x)

(7)

A special case of the α, β-level conditional
value-at-risk measure is obtained by letting β = 1.
We refer to this risk measure as the α-level con-
ditional value-at-risk, denoted by CV aRα(X).
Thus, we have:

CV aRα(X) =
1

1− α

∫ 1

α

V aRp(X) dp

=
1

1− α

∫ 1

α

F−1
X (p) dp (8)

Since we have assumed that E(X) < ∞, this risk
measure is finite, and as above, we obtain an alter-
native expression for CV aRα(X) by substituting
p = FX(x):

CV aRα(X) =
1

1− α

∫ ∞

F−1
X (α)

x dFX(x) (9)

3. Multivariate reinsurance contracts

We now consider the problem of optimizing in-
surance contracts in the multivariate case. Thus,
we let X1, . . . , Xm be m non-negative random
variables representing the risks from m business
linesa. The cumulative distribution function ofXi,
is denoted by FXi , i = 1, . . . ,m. As before we

aNote that the risks X1, . . . , Xm are not assumed to be
independent at this stage.
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assume that E(Xi) < ∞, i = 1, . . . ,m. To avoid
technical issues we also assume that X1, . . . , Xm

are absolutely continuously distributed, and that
FXi is strictly increasing, i = 1, . . . ,m.
All risks are reinsured separately. For the ith

risk, Ri(Xi) denotes the cost covered by the rein-
surance company, and Ii(Xi) = Xi − Ri(Xi)

denotes the cost covered by the cedent, i =

1, . . . ,m.
The price paid by the cedent for the ith contract

is denoted by πXi , and is assumed to be of the
form:

πi = (1 + θ)E[Ri(Xi)], i = 1, . . . ,m.

where θ > 0 represents the risk premiums charged
by the reinsurance company for handling the risks.
The total cost covered by the cedent is then:

Ψ =

m∑
i=1

Ii(Xi) + (1 + θ)
m∑
i=1

E[Ri(Xi)].

By Eq. (6) the resulting α, β-level conditional
value-at-risk of Ψ, is given by:

CV aRα,β(Ψ) = CV aRα,β(
m∑
i=1

Ii(Xi))

+ (1 + θ)

m∑
i=1

E[Ri(Xi)].

We observe that CV aRα,β(Ψ) consists of two
terms. We refer to the first term,

CV aRα,β(
m∑
i=1

Ii(Xi))

as the retained risk term, while:

m∑
i=1

πi = (1 + θ)

m∑
i=1

E[Ri(Xi)]

is referred to as the premium term.
If the risks are reinsured with insurance layer

contracts, the functions R1 . . . , Rm are given by:

Ri(Xi) =

⎧⎪⎪⎨
⎪⎪⎩

0 for Xi < ai

Xi − ai for ai ≤ Xi ≤ bi

bi − ai for Xi > bi

(10)

where ai < bi. Moreover, the functions I1 . . . , Im
are given by:

Ii(Xi) =

⎧⎪⎪⎨
⎪⎪⎩

Xi for Xi < ai

ai for ai ≤ Xi ≤ bi

Xi − (bi − ai) for Xi > bi
(11)

The main objective is to find a1, b1, . . . , am, bm so
that CV aRα,β(Ψ) is minimized.
In limiting cases where bi = ∞, i = 1, . . . ,m,

the above functions can be simplified to:

Ri(Xi) = max(Xi − ai, 0)

Ii(Xi) = min(Xi, ai)

Such contracts are referred to as stop-loss con-
tracts.

4. Optimizing reinsurance contracts

Huseby and Christensen (2020) considered the
problem of optimizing multivariate reinsurance
contracts using the α-level value-at-risk, and
proved the following key result:

Theorem 4.1. Assume that a∗1, b
∗
1, . . . , a

∗
m, b∗m

are optimal contract parameter values for the α-
level value-at-risk measure, and that:

P (
m⋂
i=1

Xi > a∗i ) ≥ 1− α. (12)

Then the following conditions must hold true:

a∗i = F−1
Xi

(
θ

1 + θ
), i = 1, . . . ,m, (13)

and:

P (
m∑
i=1

Ii(xi) ≤
m∑
i=1

a∗i ) = α. (14)

We now prove the corresponding result for the
α, β-level conditional value-at-risk:

Theorem 4.2. Assume that a∗1, b
∗
1, . . . , a

∗
m, b∗m

are optimal contract parameter values for the
α, β-level conditional value-at-risk measure, and
that a∗1, . . . , a

∗
m satisfy Eq. (12). Then the follow-

ing conditions must hold true:

a∗i = F−1
Xi

(
θ

1 + θ
), i = 1, . . . ,m, (15)
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and:

P (
m∑
i=1

Ii(Xi) ≤
m∑
i=1

a∗i ) = β. (16)

Proof: The proof of this result is very similar to
the proof of Theorem 4.1, so we just include the
main arguments here. For further details we refer
to Huseby and Christensen (2020).
We start out by assuming that the values of

a1, . . . , am are chosen so that:

P (
m⋂
i=1

Xi > ai) ≥ 1− α. (17)

Since X1, . . . , Xm are assumed to be abso-
lutely continuously distributed, it is easy to see
that for the given values a1, . . . , am there must
exist values bi > ai, i = 1, . . . ,m such that:

P (
m∑
i=1

Ii(Xi) ≤
m∑
i=1

ai) = β. (18)

We then assume that b1, . . . , bm are chosen ac-
cording to this condition (i.e., dependent on the
given values a1, . . . , am). By Eq. (3) this implies
that:

V aRβ(

m∑
i=1

Ii(Xi)) =

m∑
i=1

ai.

If p ∈ [α, β], the condition Eq. (18) also implies
that:

P (

m∑
i=1

Ii(Xi) ≤
m∑
i=1

ai) ≥ p.

At the same time, it follows by Eq. (17) that:

P (
m∑
i=1

Ii(Xi) <
m∑
i=1

ai) ≤ P (
m⋃
i=1

Xi ≤ ai)

= 1− P (
m⋂
i=1

Xi > ai) ≤ 1− (1− α) ≤ p.

By Eq. (2) this implies that:

V aRp(

m∑
i=1

Ii(Xi)) =

m∑
i=1

ai, for all p ∈ [α, β].

Hence, it follows that:

CV aRα,β(

m∑
i=1

Ii(Xi))

=
1

β − α

∫ β

α

V aRp(

m∑
i=1

Ii(Xi)) dp

=
m∑
i=1

ai. (19)

If we increase the bis, it is easy to show, using
similar arguments as above, that we still have:

CV aRα,β(
m∑
i=1

Ii(Xi)) =
m∑
i=1

ai.

At the same time premium term increases. As a
result CV aRα,β(Ψ) is increased.
If we decrease the values of the bis, the re-

tained risk term increases. At the same time the
premium decreases. It can be shown, however, that
the reduction in the premium term does not cover
the increase in the retained risk term. Hence, we
conclude that for the given values a1, . . . , am, the
corresponding values b1, . . . , bm should be chosen
so that Eq. (18) holds.
We now turn to determining the optimal values

for a1, . . . , am, assuming that b1, . . . , bm are cho-
sen accordingly so that Eq. (18) holds. By Eq. (19)
it follows that we have:

CV aRα,β(Ψ) =

m∑
i=1

ai +

m∑
i=1

πi

where:

πi = (1 + θ)

∫ bi

ai

(x− ai)dFXi(x)

+ (bi − ai)P (Xi > bi), i = 1, . . . ,m.

Using this, it is easy to see that for i = 1, . . . ,m

we have:

∂

∂ai
CV aRα,β(Ψ) = 1− (1 + θ)P (Xi > ai).

The optimal values for a1, . . . , am can then be
found by solving the equations:

∂

∂ai
CV aRα,β(Ψ) = 0, , i = 1, . . . ,m,

yielding the solution Eq. (15) �
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Note that the optimal values for a∗1, . . . , a
∗
m for

the α, β-level conditional value-at-risk measure
are exactly the same as for the α-level value-at-
risk measure. Moreover, the right-hand side of
Eq. (16) is β, while the corresponding value in
Eq. (14) is α. It is easy to see that this implies that
an optimal solution for the β-level value-at-risk
will also be optimal for the α, β-level conditional
value-at-risk. Thus, the optimization results for
the value-at-risk measure given in Huseby (2022)
applies without any modifications to the α, β-level
conditional value-at-risk as well. That is, we have
the following result:

Theorem 4.3. Assume that a∗1 . . . , a
∗
m, given by

Eq. (15), satisfies Eq. (12). Then the remaining
optimal contract parameters b∗1, . . . , b

∗
m for the

α, β-level conditional value-at-risk can be found
by solving the following optimization problem:

Minimize:
m∑
i=1

E[Ri(Xi)] (20)

Subject to: P (
m∑
i=1

Ii(Xi) ≤
m∑
i=1

a∗i ) = β (21)

with respect to b1, . . . , bm.

Proof: The proof of this result is identitical to the
proof of the corresponding result for value-at-risk
given in Huseby (2022). �
We will describe the optimization procedure in

further detail in the next section and illustrate this
by numerical examples.
By using Theorem 4.2, it is easy to prove the

corresponding result forα-level conditional value-
at-risk. Since this risk measure is just a special
case of the α, β-level conditional value-at-risk,
obtained by letting β = 1, we see that for
the α-level conditional value-at-risk, the condition
Eq. (16) is simplified to:

P (

m∑
i=1

Ii(Xi) ≤
m∑
i=1

a∗i ) = 1. (22)

This condition is obviously satisfied if we let
bi = ∞, i = 1, . . . ,m. The following theorem,
which is an immediate consequence of Theorem
4.2, summarizes this:

Theorem 4.4. Assume that a∗1, b
∗
1, . . . , a

∗
m, b∗m

are optimal contract parameter values for the α-
level conditional value-at-risk measure, and that
a∗1, . . . , a

∗
m satisfy Eq. (12). Then optimal param-

eters can chosen as:

a∗i = F−1
Xi

(
θ

1 + θ
), i = 1, . . . ,m, (23)

and:

b∗i = ∞, i = 1, . . . ,m. (24)

That is, the optimal contracts can be chosen as
stop-loss contracts �

Note that if P (Xi ≤ M) = 1, where M <

∞, then b∗i may be chosen arbitrarily within the
interval [M,∞). Thus, in such cases the optimal
solution is not unique. For simplicity, however, we
let b∗i = ∞ since this solution is guaranteed to
work anyway.
It is also worth noting that Theorem 4.4 actually

provides a fully specified optimal solution for the
α-level conditional value-at-risk. Thus, for this
risk measure finding optimal contracts is actually
much easier than for the α, β-level conditional
value-at-risk, since there is no need to optimize
the b∗i -values further.
We observe that the condition Eq. (12) is

needed for all the above results. If more infor-
mation about the joint distribution ofX1, . . . , Xm

is available, it is possible to obtain more explicit
versions of this condition. This is shown in the
following two propositions:

Proposition 4.1. Assume that X1, . . . , Xm are
positively upper orthant dependent. Then a suffi-
cient condition for Eq. (12) to hold is that:

(1 + θ)−m ≥ 1− α. (25)

Proof: According to Shaked (1982),X1, . . . , Xm

are said to be positively upper orthant dependent
if:

P (

m⋂
i=1

Xi > ai) ≥
m∏
i=1

P (Xi > ai)
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for all a1, . . . , am. Thus, it follows that

P (

m⋂
i=1

Xi > a∗i ) ≥
m∏
i=1

P (Xi > a∗i )

= (1 + θ)−m.

Hence, a sufficient condition for Eq. (12) to hold
is Eq. (25) as claimed �
Note that independence is a special case of pos-

itively upper orthant dependence. Thus, the con-
dition Eq. (25) covers the case whereX1, . . . , Xm

are independent as well. The second proposition
covers the opposite situation, i.e., where the risks
are strongly positively dependent.

Proposition 4.2. Assume that X1, . . . , Xm are
comonotonic risks. Then a sufficient condition for
Eq. (12) to hold is that:

(1 + θ)−1 ≥ 1− α (26)

Proof: X1, . . . , Xm are said to be comono-
tonic, if there exists a random variable Z and
non-decreasing functions h1, . . . , hm such that
(X1, . . . , Xm)

d
= (h1(Z), . . . , hm(Z)). We de-

note the domain of Z by Z , and introduce:
Si = {z ∈ Z | hi(z) ≥ a∗i }, i = 1, . . . ,m.

Since h1, . . . , hm are non-decreasing, there ex-
ists constants c∗1, . . . , c

∗
m such that we either have

Si = [c∗i ,∞) ∩ Z or Si = (c∗i ,∞) ∩ Z , i =

1, . . . ,m. From this it follows that there must exist
some k ∈ {1, . . . ,m} such that:

Sk ⊆ Si, i = 1, . . . ,m.

This implies that:

P (
m⋂
i=1

Xi ≥ a∗i ) = P (
m⋂
i=1

Z ∈ Si)

= P (Z ∈ Sk) = P (Xk ≥ a∗k)

= (1 + θ)−1 ≥ 1− α

Hence, a sufficient condition for Eq. (12) to hold
is Eq. (26) as claimed �
If X1, . . . , Xm are comonotonic, it follows by

well-known results that X1, . . . , Xm are asso-
ciated random variables. Hence, it follows that

X1, . . . , Xm are positively upper orthant depen-
dent as well (see Shaked (1982)). Hence, Propo-
sition 4.1 covers the comonotonic case as well.
However, the condition Eq. (26) is less strict than
Eq. (25). Thus, it makes sense to include the latter
result as well.
We observe that the conditions Eq. (25) and

Eq. (26) are satisfied whenever the risk premium,
θ, charged by the reinsurance company, is not too
large. If this condition is not satisfied, the cedent
typically has little or nothing to gain, and should
not reinsure the risks.

5. Numerical examples

In this section we will illustrate the results from
the previous section by two numerical examples.
All calculations are done by a combination of
numerical integration and importance sampling.
Before we present some numerical examples, we
briefly review some of the results from Huseby
(2022) addressing the optimization problem de-
scribed in Theorem 4.3. We start out by focussing
on the objective function which we denote by:

Φ =

m∑
i=1

E[Ri(Xi)]

For the optimization it is convenient to express
the objective function Φ in the terms of B =

(B1, . . . , Bm), where:

Bi = FXi
(bi) = P (Xi ≤ bi), i = 1, . . . ,m.

We also consider the superlevel and sublevel sets
of the objective function defined respectively as:

L+
c (Φ) = {B ∈ [0, 1]m : Φ(B) ≥ c}

L−c (Φ) = {B ∈ [0, 1]m : Φ(B) ≤ c}
A function is quasiconvex if all its sublevel sets
are convex, while a function is quasiconcave if
all its superlevel sets are convex. See Boyd and
Vandenberghe (2004). If the objective function is
quasiconvex, the solution is usually an inner point
in the the set of feasible solutions, while if the
objective function is quasiconcave, the solution
will typically be located at the boundary of this
set. In Huseby (2022) the following result was
proved:



357Proceedings of the 32nd European Safety and Reliability Conference (ESREL 2022)

Theorem 5.1. If the risks X1, . . . , Xm have de-
creasing hazard rates, then Φ is a quasiconvex
function of B. If X1, . . . , Xm have increasing
hazard rates, then Φ is a quasiconcave function
of B.

In the first example, X1 and X2 are indepen-
dent and Pareto distributed with mean 50 and
standard deviation 75. The Pareto distribution has
a decreasing hazard rate. Thus, by Theorem 5.1
we have that Φ is quasiconvex, and hence, that
the sublevel sets are convex. Figure 1 shows iso-
curves for the objective function Φ along with
the constraint curve for the α, β-level conditional
value-at-risk, where α = 0.988 and β = 0.990.
The iso-curves clearly show that indeed the sub-
level sets are convex. The constraint curve is bend-
ing slightly against the origin. The optimal combi-
nation of B1 and B2 is the point of the constraint
curve where the objective function is smallest.

Fig. 1. Constraint and Iso-contours where X1 and
X2 are Pareto distributed with mean 50 and standard
deviation 75.

From the figure it is evident that this corre-
sponds to a balanced solution, i.e. a solution
where B1 = B2. Detailed calculations yield
the solution (B∗1 , B

∗
2) = (0.995, 0.995). The

corresponding solution for the bis is (b∗1, b
∗
2) =

(303, 303).
If β is increased, the constraint curve will move

further and further away from the origin and even-
tually end up as a single point (B1, B2) = (1, 1).
In Figure 2 we have shown how the α, β-level

Fig. 2. Conditional value-at-risk for different β-values
as a function of B1 = B2 when X1 and X2 are Pareto
distributed with mean 50 and standard deviation 75.

conditional value-at-risk varies as a function of the
common B1 = B2 value for different β-values,
ranging from 0.990 to 1. We see that the optimal
common value for B1 and B2 becomes larger and
larger as β increases, and when β = 1, the optimal
value for B1 and B2 is 1, as expected.
In the second example, X1 and X2 are inde-

pendent and truncated normally distributed with
mean 50 and standard deviation 25. The truncated
normal distribution has an increasing hazard rate.
Thus, by Theorem 5.1, Φ is quasiconcave, and
hence, that the superlevel sets are convex. Figure
3 shows iso-curves for the objective function Φ

along with the constraint curve for the α, β-level
conditional value-at-risk, where α = 0.988 and
β = 0.990. The iso-curves clearly show that in-
deed the superlevel sets are convex. The constraint
curve is almost linear. The optimal combination
of B1 and B2 is the point of the constraint curve
where the objective function is smallest.
From the figure it is evident that this corre-

sponds to a boundary solution. Detailed calcula-
tions yield two solutions (B∗1 , B

∗
2) = (0.989, 1)

and (B∗1 , B
∗
2) = (1, 0.989). The corresponding

solutions for the bis are respectively (b∗1, b
∗
2) =

(111,∞) and (b∗1, b
∗
2) = (∞, 111).

If β is increased, the constraint curve will again
move further and further away from the origin and
eventually end up as a single point (B1, B2) =

(1, 1). In Figure 4 we have shown how the α, β-
level conditional value-at-risk varies as a function
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Fig. 3. Constraint and Iso-contours whereX1 andX2

are truncated normally distributed with mean 50 and
standard deviation 25.

Fig. 4. Conditional value-at-risk for different β-values
as a function of B1 (B2 = 1) when X1 and X2 are
truncated normal distributed with mean 50 and standard
deviation 25.

of B1 (letting B2 = 1) for different β-values,
ranging from 0.990 to 1. The optimal value for
B1 becomes larger and larger as β increases, and
when β = 1, the optimal value for B1 is 1, as
expected.

6. Conclusions and further work

In the present paper, we have seen how multiple
reinsurance contracts can be optimized with re-
spect to various types of conditional value-at-risk.
In particular, we have introduced the α, β-level
conditional value-at-risk, and shown that this can
be handled in exactly the same way as the β-level
value-at-risk. As β approaches 1, the α, β-level

conditional value-at-risk approaches the classical
α-level conditional value-at-risk. The optimal so-
lution for this risk measure is obtained as a limit of
the optimal solution for the α, β-level conditional
value-at-risk. In particular, it is shown that this
limit is a stop-loss contract.
Future work in this area includes optimization

with respect to other risk measures and objective
functions, how to handle dependent risks, as well
as a study of how the results may change when
the risk distribution parameters are subject to un-
certainty.
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