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Choke valves are extensively used in the offshore oil industry, where they regulate the flow of hydrocarbon fluids
from the oil wells and reduce the wellhead pressure. They are subject to continuous erosion that results from the
impingement of solid particles in the hydrocarbon fluids. Since maintenance and inspections are costly for subsea
choke valves due to the reduced accessibility, it is crucial to evaluate the erosion state of chokes accurately.
One health indicator of erosion is the difference between the theoretical and estimated valve flow coefficients (Cv),
a relative measure of the efficiency at allowing fluid flow. Traditionally, the Cv deviation is fit by a Gamma process.
We show why this approach is unrealistic in practice before proposing a model that uses the historical valve openings
and process parameters to calibrate raw Cv measurements. This allows us to estimate the erosion rate at different
valve openings and reveal the “true” erosion state, which differs from the raw Cv. The least-squares method is used
to estimate the baseline shape of the Cv deviation curve. We apply our method to Equinor’s choke valve erosion
data, showing that the new method, compared to traditional ones, gives a more accurate estimation of the erosion
state which can then be used to provide decision support for production and maintenance managers.
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1. An introduction to the function and
erosion of choke valves

Located in a harsh environment, subsea systems
are prone to degradation and failures. Due to the
inaccessibility, field inspections and maintenance
on subsea systems are generally complex, expen-
sive, and cannot be carried out without a certain
delay. Thus, monitoring and estimating the sys-
tem’s health state and predicting the systems’ re-
maining useful lifetime (RUL) bears a recognized
value in industrial facilities’ safety and economic
aspects.

Production chokes are designed to take the
brunt of the pressure off the line components,
increasing their life and yielding significant ben-
efits. By restricting the flow to a small opening or
orifice, a choke valve reduces the well pressure,
controls production rate, creating downstream or
back pressure. They stand out as the components
in oli & gas production systems that are most
susceptible to erosion DNVGL-RP-O501 (2015),
due to the potential for high flow velocities created

by the pressure let-down across the choke. Be-
cause of sand production, drilling, and hydraulic
fracking, the abrasive well stream often consists
of a mix between oil, gas, water, sand, and other
particles such as calcite and proppants, which ag-
gravates the erosion.

Numerous researches investigated wear and
erosion from a material or flow perspective. For
example, Haugen et al. (1995) examined the sand
erosion of wear-resistant materials; Wheeler et al.
(2006) addressed the application of diamond to
enhance choke valve’s lifetime; Wood (2006) in-
vestigated the erosion–corrosion interactions and
their effect on marine and offshore materials;
Gharaibah and Zhang (2016) used CFD to build
erosion prediction models for piping elements.
Most of the work is helpful for the design phase
but can hardly be applied in the operation phase
for online condition monitoring of the choke,
where we measure the performance indicator in
real-time and raise the alarm if an anomaly is
detected.
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1.1. Health indicator

Valve Flow Coefficient (Cv) is a valve’s capacity
for a liquid or gas to flow through it. It is tech-
nically defined as “the volume of water at 60°
Fahrenheit (in US gallons) that will flow through
a valve per minute with a pressure drop of 1 psi
pound per square inch across the valve.” As a
valve opens, the Cv increases until the valve is
fully open, reaching its highest possible value. An
example of theoretical Cv is shown in Figure 1.

Fig. 1.: Theoretical Cv of a production choke. X-
axis is the relative valve opening in percentage.

One health indicator of the erosion process
could be the difference between the theoreti-
cal and estimated valve flow coefficients (Cv)
DNVGL-RP-O501 (2015). For example, for mul-
tistage/labyrinth cage with interval plug choke, Cv
deviation can reveal the level of damage since
the labyrinths wear gradually. It has also been
documented in Nystad et al. (2010) the use of Cv
deviation to evaluate the health state of disc-type
chokes. According to IOHN report (2012), when
the deviation finally passes a predefined threshold,
the choke should be inspected. Efforts have been
made to obtain a more accurate estimation of Cv
deviation using valve opening and process param-
eters Baraldi et al. (2011); Paggiaro et al. (2013).

1.2. Limitations of existing approaches

Traditionally, the erosion of a choke valve is con-
sidered a monotonic process: as the erosion be-
comes more and more severe, the pass area inside
the choke valve grows due to material loss, allow-

ing the fluid to pass more easily, and the actual Cv
continuously rises. This led to a straightforward
RUL estimation method: the Cv deviation is mod-
eled by a Gamma process, a continuous, mono-
tonically increasing jump process. When the Cv
measurements are non-monotone, it is considered
contaminated by Gaussian noise, and the whole
sequence is filtered to be non-decreasing so that
a Gamma process can fit the data Nystad et al.
(2010). The distribution of RUL is then calculated
based on the first passage time of the Gamma pro-
cess with respect to a predefined failure threshold
Zhang et al. (2016). Some also considered the fil-
tering techniques for Gamma processes perturbed
by noise Liu et al. (2022). However, the assump-
tion that Cv deviation is monotonically increasing
could be unrealistic since sand production can
block the passages inside a choke valve, leading
to temporal reduction of Cv. Besides, influence of
choke opening on the Cv measurements has not
been discussed.

1.3. Contribution and organization

We propose in this paper a model that uses his-
torical valve openings and process parameters to
calibrate the raw Cv measurement. Based on least
squares, it computes the initial shape of the Cv
deviation curve and estimates the erosion rate at
different valve openings. As a result, it reveals the
“true” erosion state (referred to in this paper as
“adjusted Cv deviation”) which can differ a lot
from the raw Cv deviation.

The paper is organized as follows. In section
2, we highlight the importance of considering
valve opening when evaluating the degradation of
a choke valve. Section 3 presents the principle and
formulations of our new model. Case studies on
real choke erosion data are provided in section 4.
Concluding remarks are given in section 5.

2. Valve opening and Cv measurements

Using the Cv deviation as a degradation indica-
tor requires a careful definition of the theoretical
Cv, which itself depends on the valve opening,
or travel. According to Control Valve Handbook
(2019), travel is defined as “the movement of
the closure member from the closed position to
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an intermediate or rated full-open position”. We
use the word “opening” to denote the travel in
percentage, i.e., 0% for fully closed, and 100% for
fully open. Since previous work on using Cv data
to monitor the choke valve condition rarely ad-
dressed the influence of valve opening, we present
in this section why and how valve opening should
be taken into account.

2.1. Observed Cv and theoretical Cv

Let t = {t0, t1...tn} be the observation times
(days). t may or may not be equally-spaced, but
is usually discrete and belongs to the set of inte-
gers. Let h = {h0, h1...hn} be the openings at
time t0, t1.... And let x = {x0, x1...xn} be the
corresponding observed Cv deviations:

∀i ∈ 0...n, xi = Cvobs(ti, hi)−Cvtheo(hi). (1)

where Cvtheo(hi), the theoretical Cv at opening
hi, is independent of time and can be found in
technical documents. The observed Cv at time
ti, Cvobs(ti, hi), depends on both time and valve
opening. If at time t = t0 the valve is good as new,
then the initial degradation state at t0 is 0 for any
openings. In reality, the Cv record and operational
history are often incomplete, and the valve is al-
ready eroded to some extent at the beginning of
the observation.

The valve’s performance degrades with time
and usage, and the Cv curve will evolve along the
time axis, slowly “drifting away” from the theo-
retical values. The actual Cv deviation, denoted
as y(t, h), is the erosion ground truth. Thus, the
observed Cv deviation x is just a discrete sam-
pling of y, at instants t0, t1, t2... and at openings
h0, h1, h2.... Our goal is to infer y from x and h.

2.2. Initial Cv deviation curve

The initial Cv deviation curve (ICDC) is defined
as the Cv deviation curve (as a function of valve
opening) at the very beginning of the observation.
The shape of ICDC can be visualized by plotting
x against opening and time as in Figure 2.

Figure 2 emphasizes the movement from one
datum to the next: instead of plotting data
pairs (hj , xj), we draw colored vectors from
(hj−1, xj−1) to (hj , xj). In the early phase, the

Fig. 2.: Evolution of Cv deviation curve of a pro-
duction choke during its 350 working days. At any
instant, the Cv deviation (y-axis on the left) is a
function of opening (x-axis), and moves up and
down with time (y-axis on the right).

data points are linked by dark purple arrows,
then rise and fall until the last day, where the
arrows become light yellow. Most arrows share
the same slope except for those vertical displace-
ments. Thus, one can make an intuitive assump-
tion that the ICDC has a straight-line shape and
moves up and down as a whole due to external
shocks.

From Figure 2, we notice that the true erosion
can be masked by the changes in the valve open-
ing: when the opening is switched to a small value,
the Cv deviation becomes larger, and vice versa.
This is not related to erosion and is referred to as
“observation bias”. Also, the Cv can decrease due
to clogging, which affects the internal geometry
of the choke. Figure 2 shows that the erosion was
decreasing from around day 150 (dark green) to
day 250 (light green) continuously. One possible
explanation is massive sand production blocking
the pass area inside the choke, leading to a reduced
capacity to allow the fluid to pass. Such behaviour
prevents the use of any monotonic stochastic pro-
cess, such as Gamma or IG process, to describe
the degradation process.

3. New model for erosion state
estimation

Let {f0(h), f1(h)...fn(h)} be the sequence of
functions representing Cv deviation curves at time
t0, t1...tn. f0(h) is the ICDC. Our goal is to esti-
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mate fj(h) based on t, h and x.
The basic assumption is that the increment in

the raw Cv deviation, xj − xj−1, can be decom-
posed as

• a shift along the Cv deviation curve (observa-
tion bias)

• a local erosion at opening hj+1

• a vertical displacement δj representing global
erosion caused by external shocks

Fig. 3.: Δx versus Δh. Red grid represents pre-
sumably the Cv deviation curve, which is here a
straight line. The observed Cv deviation increment
(green arrow) can be decomposed as a vertical
movement (erosion) and a shift along the red grid
(observation bias).

The above decomposition can be justified by
Figure 3 where all the arrows in Figure 2 are
shifted to origin. WhenΔh is close to 0, we notice
that most arrowheads sit on a red grid composed
of parallel straight lines with a slope of -3.65. This
is the supposed Cv deviation curve, which causes
the observation bias.

As the first measurement (h0, x0) is traversed
by f0, it is straightforward that

f0(h) = x0 + f(h)− f(h0) (2)

where f(h) determines the shape of Cv deviation
curves. E.g., f(h) = βh is a straight line.

Let g(h) be the daily Cv deviation growth at
opening h, independent of the historical process
parameters and openings. g(h) is introduced be-
cause the Cv deviation rates at different open-
ings are sometimes not the same: the Cv tends

to deviate more at smaller openings than at larger
openings. Let Δtj = tj − tj−1 be the time gap
between two consecutive observations. Δtjg(h)

represents the local Cv deviation growth at h. The
sequence {f0(h), f1(h)...fn(h)} are governed by
the recursive equation system:{

fj(h) = fj−1(h) + δj +Δtjg(h)

fj(hj) = xj

(3)

Let Δfj = f(hj) − f(hj−1). The solution of
Eq.(3) (in non-recursive form) is given below.{
fj(h) = xj + f(h)− f(hj) + tj(g(h)− g(hj))

δj = Δxj −Δfj − (tjg(hj)− tj−1g(hj−1))

(4)
The vector of shocks, δ = [δ1, δ2...δn]

T cor-
responds to the vertical displacements of the Cv
deviation curve that cannot be explained by the
local erosion growth g(h) and the initial shape
f(h). It can be treated as noise if there is no prior
knowledge about δ. To explain the observations as
much as possible by f and g, the squared sum of δ
is minimized. Suppose that f and g are equipped
with parameters β and γ. The least-squares esti-
mates of β and γ are:

β∗,γ∗ = argmin
β,γ

||δ||2 = argmin
β,γ

δT δ (5)

3.1. f is a polynomial

In the special case where f and g are polynomi-
als, the estimates have closed-form solution. Let
f(h) =

∑p
i=1 βih

i and g(h) =
∑q

i=0 γih
i. Then,

Eq.(4) can be written as

δ = Δx−Uθ (6)

where θ = [β1, ...βp, γ0...γq]
T is the concate-

nated vector of parameters.U = [Uβ,Uγ ], where
Uβ is a n× p matrix with Uβ(i, j) = hj

i − hj
i−1,

and Uγ is a n × (q + 1) matrix with Uγ(i, j) =

tih
j−1
i − ti−1h

j−1
i−1 . The closed-form solution for

θ∗ is therefore:

θ∗ = (UTU)−1UTΔx (7)

3.2. f is piecewise linear

Another possible choice for f(h) is a piecewise
linear model. In some field data, we observe that
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there exists a breaking point (BP) in the valve
openings: the Cv deviations before and after the
BP are significantly different, e.g., with different
slopes. In this case, f(h) can be described by a
continuous piecewise linear function.

When there is only one BP, f(h) is equipped
with 3 parameters as:

f(h) =

{
β1h if h ≤ b

β2h+ (β1 − β2)b otherwise
(8)

where b is the BP, and β1, β2 are the slopes before
and after b. The term (β1−β2)b ensures that f(h)
is continuous at b. Parameter estimation can be
achieved by Eq.(5), but no closed-form solution
exists because the least-squares regression is not
linear. When there are p breaking points, say b =

b1, b2...bp, f(h) has p + 1 segments. Let b0 = 0

and bp+1 = 100%, then,

f(h) =

p+1∑
j=1

((
βjh+

j−1∑
i=1

(βi − βi+1)bi
)

× �(bj−1 < h ≤ bj)

)
(9)

When b is unknown the regression is non lin-
ear. However, if prior knowledge and experts’
opinions are available for identifying the break
points, the parameters to be estimated reduce to
β = β1, β2...βp+1, and closed-form solution can
be derived. It suffices to redefine the matrix Uβ

in U in Eq.(6). Here, Uβ is a n × (p + 1) matrix
whose (i, j) entry is given by:

Uβ(i, j) = (hi − bj−1)�(bj−1 < hi ≤ bj)

+ (bj − bj−1)�(hi > bj)

− (hi−1 − bj−1)�(bj−1 < hi−1 ≤ bj)

− (bj − bj−1)�(hi−1 > bj) (10)

A brief proof for Eq.(10) is given below. Let β
be a column vector. LetBh be a (p+1)× (p+1)

upper triangular matrix with Bh(i, i) = h− bi−1,
Bh(i, j) = bi − bi−1 if j > i and 0 otherwise.
Let Dh be a column vector of length p + 1 with
Dh(i) = �(bi−1 < h ≤ bi). Therefore,

f(h) = (BhDh)
Tβ (11)

The i-th row of Uβ, when multiplied by β,
equals to f(hi) − f(hi−1). Uβ(i, j) is therefore

the j-th element of Bhi
Dhi

−Bhi−1
Dhi−1

.

BhDh(j) = Bh(j, :)Dh

=

j−1∑
s=1

0 · �(bs−1 < h ≤ bs)

+ (h− bj−1)�(bj−1 < h ≤ bj)

+ (bj − bj−1)

p+1∑
t=j+1

�(bt−1 < h ≤ bt) (12)

where the first sum is 0 and the last sum is �(h >

bj), which proves Eq.(10).

3.3. g depends on process parameters

Previously, function g(h) gives the daily Cv devia-
tion growth at opening h, independent of historical
openings. Nevertheless, field experience suggests
that the erosion is more severe when operating at
a small opening and is mild at larger openings.
E.g., for a plug & cage choke valve, when the
cage ports are fully open, the high-velocity jets
are perpendicular to the valve axis, and energy is
dissipated; otherwise, the jets are directed toward
the valve outlet and aggravates its erosion over
time.

Valve opening influences the fluid’s direc-
tion, which determines the particle impact an-
gle. According to the erosion response model in
DNVGL-RP-O501 (2015), the material loss is
proportional to both the particle impact velocity
(which equals approximately the fluid velocity)
and F (α), the ductility of the target material with
impact angle α. We do not seek to establish a
precise relation between α and opening. Instead,
we assume the daily Cv growth g at opening h

depends on the previous day’s opening and flow
rateQ. In this scenario, measurement times should
be equally spaced: tj − tj−1 = 1, j = 1, 2, ... As
such, Eq.(3) becomes:

{
fj(h) = fj−1(h) + δj + g(h|Qj−1, hj−1)

fj(hj) = xj

(13)
To simplify the notations, we define gk,j =

g(hk|Qj , hj) and g·,j = g(h|Qj , hj). The solu-
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tion of Eq.(13) is given below:{
fj(h) = xj + f(h)− f(hj) +

∑j−1
i=0 (g·,i − gn,i)

δj = Δxj −Δfj −
∑j−2

i=0 (gj,i − gj−1,i)− gj,j−1

(14)
If the observation times are not equally spaced,

we can either complete the missing data by statis-
tical methods or establish the following equations
system:{
fj(h) = fj−1(h) + δj +Δtjg(h|Qj−1, hj−1)

fj(hj) = xj

(15)
where Δtjg(h|Qj−1, hj−1) represents the degra-
dation growth during tj−1 and tj at opening h,
given the latest datum (Qj−1, hj−1) observed on
day tj−1. Eq.(15) implicitly assumes that the pro-
cess parameters (Qj−1, hj−1) remain constant be-
tween tj−1 and tj . The corresponding formulas
for f and δ are shown respectively by Eq.(16) and
(17). Model parameters can then be estimated by
Eq.(5).

fj(h) = xj + f(h)− f(hj)

+

j−1∑
i=1

ti(g·,i−1 − g·,i − gj,i−1 + gj,i)

+ tj(g·,j−1 − gj,j−1) (16)

δj = Δxj −Δfj

−
j−2∑
i=1

ti(gj,i−1 − gj,i − gj−1,i−1 + gj−1,i)

− tj−1(gj,j−2 − gj,j−1 − gj−1,j−2)− tjgj,j−1

(17)

3.4. Model selection

The example presented in Figure 2 indicates a
relatively simple form for the ICDC. Indeed, to
avoid overfitting, f and g should not be too com-
plex. In the extreme case, we can define an f0
that traverses every datum, but such a model is
“static”, does not change over time, and cannot
describe a choke valve’s erosion.

LetM = {M1,M2...} be the set of candidate
models. The classic cross-validation consists in
dividing the data into training set and testing set.
However, it does not apply as we are dealing with

time series data. Therefore, to evaluate a model’s
ability to generalize, we use the original data and
its subset (r out of n data points) as testing set
and training set. The procedure is shown below.
In Algorithm 1, N is a large number, typically 500
or 1000; r can be set as 0.75*n.

Algorithm 1 Model selection

1: for M inM do
2: for i in 1...N do
3: Build training set by randomly select

r data points
4: Compute optimal parameter θ

(i)
M for

the training set with Eq.(5)
5: Compute δ

(i)
M with θ

(i)
M for the entire

data set with (Eq.6)
6: end for
7: Compute mean error for model M : ε̄M =∑N

i=1 ||δ(i)M ||2/N
8: end for
9: Select M with minimal mean error

4. Case study and discussion

Consider the Cv deviation of a production choke
of type CV428. The observation covers 413 days,
with 288 data in total. Raw Cv is plotted against
opening in Figure 4 and time in 5. Large fluc-
tuations between day 170 and day 300 cannot
be explained by our model and deserves a more
careful examination by consulting the event log.
So here we remove those data.

The evolution of Cv deviation curve is shown
in Figure 6. The slope of the arrows appears to
be increasing in time: the purple curves at the
beginning of observation have a smaller slope
than the yellow ones at the end of observation.
Two scenarios are most probable: first, ICDC is
a straight line, and Cv deviation grows faster at
smaller openings than at larger openings; second,
ICDC is a parabola that is “flat” at smaller open-
ings and “steep” at larger openings.

We fit a polynomial to f and g, so as to deter-
mine the shape of ICDC and the unbalanced ero-
sion rate. Candidate models are polynomials with
p, q ∈ {(1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)}.
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Fig. 4.: Raw Cv (orange) versus theoretical Cv
(blue points). The date of the data is masked.

Fig. 5.: Raw Cv (orange), theoretical Cv (green)
and Cv deviation (blue) plotted against time. The
valve opening information is masked.

We did not consider the case where g depends on
process parameters, since the observation times
are far from evenly-spaced. Also, the piecewise
linear modeling of f is excluded in this example
because no apparent break point is observed. Fol-
lowing Algorithm 1, optimal polynomial orders
are found as p∗ = 1, q∗ = 1, which means f

and g are straight lines: f(h) = −4.63h, and
g(h) = 0.24− 0.006h.

In Figure 6, f0 is shown by the red dash-dotted
line. According to g, the daily Cv deviation should
be around 0.12 at opening 20%, and 0.04 at 32%.
The standard deviations of the parameters for f
and g are respectively 0.92 and [0.09, 0.003]. The
second best model is configuration p = 2, q = 0.
The corresponding ICDC is drawn with the blue
dashed line in Figure 6, with f(h) = 2.82h −
0.16h2, and g(h) = 0.073.

Fig. 6.: The evolution of Cv deviation curves as
a function of time is visualized by colored vec-
tors. Red and blue lines represent the two esti-
mated most likely ICDC: a straight line (red) or
a parabola (blue).

We can then compute the adjusted Cv deviation
for an arbitrary opening h based on f0, δ and g us-
ing Eq.(4). Let h = 26%. In Figure 7, the orange
points show the raw Cv deviation. The 0.05 and
0.95 quantiles of adjusted Cv deviation are drawn
in blue and filled in between. The blue solid line
and the orange dashed line show the trends (com-
puted by Nadaraya–Watson estimator). Clearly,
the erosion is more severe at h = 26% than what
the raw measurements suggest.

Fig. 7.: The adjusted and raw Cv deviation.

Finally, in Figure 8, we can plot the smoothed
Cv deviation surface. The green points are the raw
Cv deviation plotted against time and opening.
The surface is obtained by calculating the Cv de-
viation growth trend (using the Nadaraya–Watson
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estimator as we did in Figure 7) for each opening
inside the opening range. This is an estimation of
the erosion ground truth y(t, h) based on the raw
measurements.

Fig. 8.: Smoothed Cv deviation surface.

5. Conclusions

We reveal some common pitfalls in using Cv
monitoring data to evaluate the health state of
choke valves. The erosion is not monotonic, and
the Cv data should be considered in combination
with historical valve opening data. We present
a model for adjusting the raw Cv measurement
based on valve opening and process parameters.
The results improve the estimation of the choke
valve’s erosion state and can provide insights for
decision makers in production and maintenance.

Nevertheless, the model assumes a determinis-
tic relationship between the valve opening and Cv
deviation. For future work, stochastic models that
loosen this assumption are worth investigating. In
particular, the valve is operating in a changing
working condition (opening), which not only de-
termines the observed Cv but can also influence
the erosion growth. Thus, a state-space model
may be a good choice for describing the erosion
process. Finally, sand data, if accessible, should
be taken into account since they can also influence
the amplitude of Cv deviation.
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