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The electric power system is a critical infrastructure in which power transformers play a key role in linking together
generation and end-use of electricity. The consequences of transformer breakdown can be significant, and aging
transformers have a higher probability of failure. For decisions in asset management and power system development,
it will therefore be useful to capture how deteriorating component condition affects failure probabilities and the
overall reliability of the power system. Since such decisions have planning horizons of multiple years, the analysis
should also capture similar time horizons. To this end, this paper proposes an analytical approach to power system
reliability analysis (PSRA) accounting for time dependencies in the technical condition of components. An analytical
PSRA methodology integrating a transformer condition model is extended to analysis horizons of multiple years.
This analytical methodology is compared with a Monte Carlo simulation (MCS) approach to PSRA by applying
both to a realistic case study. The comparison validates the analytical approach by showing that the inaccuracies its
approximations introduce are negligible, at least for the considered case. This means that the proposed methodology
can be a computationally viable alternative to MCS methods, especially when it is too time consuming to assess the
impact of different scenarios with sufficient statistical precision using MCS. However, drawbacks with the analytical
approach for further extensions of the methodology are also discussed.
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1. Introduction

Aging power systems with deteriorating compo-
nents is a major concern for the continued reliable
supply of electric power. Addressing this concern
calls for an integrated approach to power system
reliability analysis in which reliability analyses
both at component level and system level are in-
cluded. Traditionally, the first level focuses on a
single asset or component in the power system
(e.g., a transformer station) but does not properly
account for its importance in the power system
for the reliability of supply. The second level
takes a broader view of the power system but
usually neglects how the condition of individual
components influences their probability of failure
and how this contributes to the overall power sys-
tem risk. For instance, reliability of supply analy-
ses applied for long-term power system planning
studies commonly assume the same failure rate
for all components of the same type. However,
it is well known that deteriorated power system

components have a higher probability of failure
than new components.

The overall aim of this work is to account for
the technical condition of power system compo-
nents (such as transformers) in long-term power
system reliability analyses to better inform power
system development and asset management de-
cisions. The work presented in this paper builds
upon previous research integrating a transformer
health model with an existing, analytical power
system reliability analysis (Toftaker et al., 2022).
In this modelling framework, condition is mod-
elled by a health index, and probability of fail-
ure is given by a lifetime distribution evaluated
at the corresponding apparent age. Employing an
analytical approach to the power system reliability
analysis has benefits in terms of computational
efficiency and analytical transparency. However, a
drawback with the previously developed analyti-
cal approach is that it is applicable for an analysis
horizon of around just one year into the future.
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This paper extends the work by Toftaker et al.
(2022) to a longer time horizon by modelling how
technical condition develops over time, both due
to deterioration and maintenance or replacement.
The extension is important to make the methodol-
ogy applicable to decision making, for instance by
assessing the long-term benefit of replacing an old
transformer with a new one.

The rest of this paper is structured as follows.
Section 2 introduces the necessary theoretical
background for power system reliability analysis
in general and the specific analytical methodol-
ogy that is employed in particular. To validate
the extended analytical methodology proposed in
this paper, a Monte Carlo simulation (MCS) ap-
proach is employed, and Section 2 therefore also
introduces the fundamentals of MCS approaches
to power system reliability analysis. Section 3
first summarizes the component reliability model
of Toftaker et al. (2022) before presenting the
proposed extensions to longer time horizons. In
Section 4, the analytical and MCS-based approach
to accounting for time dependencies in component
condition are applied to a case study. Finally, a
summary of the comparison between the two ap-
proaches and suggestions for further extensions of
the methodologies is given in Section 5.

2. Power system reliability analysis

Methods for power system reliability analysis can
be broadly divided into two groups: i) analytical
methods and ii) Monte Carlo simulation methods
(Li, 2014; Billinton and Allan, 1996; Billinton and
Li, 1994). In this paper we both propose an exten-
sion of the analytical method presented in Toftaker
et al. (2022) and validate it using a MCS method.
Therefore this section first introduces the theoret-
ical background necessary for both approaches to
evaluating the reliability of a power system, before
specifying the analytical method in Section 2.1
and the specific MCS method used in Section 2.2.

Reliability of supply analyses are concerned
with the electricity supply at delivery points or
load points in the power system. The results are
the values of a set of reliability of supply indices
for a set of delivery points, with the annual en-
ergy not supplied being an important example of

such a reliability index. It measures the long-term
average ability of the power system to provide
electric power to end-users. At a given point in
time t, this ability is determined by the system
state that we describe as a combination of the
contingency state and the operating state. The con-
tingency state is the combination of the functional
state of the individual power system components.
This contingency state may be represented by a
binary vector V(t) = [V1(t), . . . , Vn(t)], where
V1(t) = 1 denotes that component 1 is in service
and V1(t) = 0 denotes that it is in an outage state,
etc. The operating state is characterized by the
load and generation composition in the system.
For the purposes of this paper, it is described by
the load demand at all the load buses (delivery
points) P(t) = [P1(t), . . . , Pm(t)].

To evaluate the energy not supplied it is nec-
essary to estimate the amount of power supply
interruption (or loss of load) for each system state
that is considered in the reliability analysis. This is
done using a contingency analysis. In this work we
will employ the contingency analysis implementa-
tion of Gjerde et al. (2016) both for the analytical
and MCS-based reliability analysis. It is based on
solving an optimal power flow problem to obtain
an estimate of the system available capacity (SAC)
for each delivery point. Each combination of op-
erating state and contingency state included by the
reliability analysis methodology is then evaluated
to obtain SAC as a function of time for each
delivery point k. The interrupted power at time t

and delivery point k for contingency j is given by

Pinterr,j,k(t) = Pk(t)− SACj,k(t) (1)

2.1. Analytical approach

Most analytical reliability analysis methods are
characterized by considering a pre-defined set of
contingencies rather than sampling contingencies
randomly as in a MCS methods. This is called
the contingency enumeration approach, and the
contingency set can be specified to include, e.g.,
all first- and second-order component outages.
Other typical limitations of analytical methods are
that they are based on calculating expected values
assuming that the underlying stochastic processes
have reached a steady state. It can be cumbersome
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to include time dependencies, and it was primarily
this limitation that motivated the work presented
in this paper.

The type of analytical, contingency enumera-
tion method that we consider here is the minimal
cut set method (Billinton and Allan, 1996), where
contributions to reliability of supply indices are
calculated for each contingency j that corresponds
to a minimal cut set for the power supply to
delivery point k. More specifically, as Toftaker
et al. (2022) we employ an implementation of
the OPAL methodology (Kjølle and Gjerde, 2012;
Gjerde et al., 2016). OPAL extends the standard
minimal cut set methodology by, among other
things, accounting for multiple operating states.
The analysis horizon of one year is divided in
a discrete set of operating states Po, and each
operating state is associated with a set of hours
of the full years. The hours associated with each
operating state do not need to be consecutive.

This analytical reliability analysis methodology
rests on the assumption that the reliability of indi-
vidual power system components are described by
a two-state Markov model. This implies that the
underlying probability distributions for the time to
failure (or in general transitions between the two
states) are exponential, and consequently, that the
components’ failure rate functions are constant in
time.

Each reliability analysis then considers all com-
binations of a pre-defined set of operating states
and a pre-defined contingency list. The SAC is
evaluated for all delivery points for each combi-
nation of the operating state o and contingency j

to obtain the interrupted power Pinterr,o,j,k. Ac-
cording to this analytical power system reliability
analysis method, contributions to the annual ex-
pected energy not supplied (EENS) are calculated
as

EENSa,o,j,k = λo,j · ro,j · Pinterr,o,j,k, (2)

where λo,j and ro,j are the equivalent failure rates
and outage times for contingency j and operating
state o. These contributions are then aggregated
to obtain the annual expected energy not supplied
for a delivery point by summing over the set of
operating states and set of contingencies.

2.2. Sequential Monte Carlo simulation

Another approach to evaluate the reliability of the
power system is by Monte Carlo simulation. For
an introduction to Monte Carlo sampling applied
to power systems the reader is referred to Billinton
and Li (1994). We propose a sequential Monte
Carlo algorithm to capture time dependence of the
condition-dependent probability of failure. The
idea is to draw random samples of the contingency
state of the power system as a function of time.
This is done by a state duration sampling tech-
nique for sampling the functional state of each
individual component of the system as a function
of time. This choice is made to allow for general
probability distributions for the time to failure
(i.e., not limited to exponential distributions) in a
flexible manner.

The result of the state duration sampling is a
time series of contingency states for each Monte
Carlo sample i,Vi(t). We use the same discretiza-
tion of the time horizon into operating states as
above. Each unique combination of operating state
and contingency state is evaluated to obtain the
interrupted power as a function of time for each
simulation Pinterr,k,i(t).

The energy not supplied is given as an integral
over time, which is evaluated as a sum across
hours within the analysis horizon

ENSk,i =
T∑

t=1

Pinterr,k,i(t) (3)

A Monte Carlo estimate of the expected energy
not supplied is given by the mean across the
Monte Carlo samples

EENSk =
N∑

i=1

ENSk,i
N

(4)

3. Component reliability

To include technical condition into the reliabil-
ity analysis we introduce a component reliability
model. The model is similar to the one presented
by Toftaker et al. (2022). It is important to note
that it describes the condition of the power system
component that at any time fills a certain func-
tion in the power system. It does in other words
not describe the individual physical components
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themselves, which may be replaced or retired.
Although the model is general, it will later in the
paper be applied only to transformers.

We consider a component that may fail by
two independent mechanisms, where the first is
referred to as wear-out failures and depends on
the technical condition of the component and the
other is referred to as mid-life failures and is
independent of condition. Following Foros and
Istad (2020), the time until wear-out failure Tw

follows the probability distribution FTw(s), where
s is the apparent age of the component. It is
assumed that if the health index at calendar age
t0 is HI0 and the corresponding apparent age s0
is s0 = τ0(HI0). The relation τ between health
index and apparent age may be obtained through
statstical data as illustrated by Foros and Istad
(2020). To obtain apparent age as a function of
calendar time it is further assumed that apparent
age increases at the same rate as calendar age, i.e.
s(t) = τ0(HI0) + t, where it is assumed that
the present time is t = 0. The development and
integration of less simplistic condition prognosis
models are left for future work.

The time to mid-life failure follows an exponen-
tial distribution with rate λml. If a failure occurs
the component remains in a failed state for a time
period TR until a repair is executed. The repair
time TR is assumed to be exponentially distributed
with rate μ. If a wear-out failure has occurred a
replacement is required, which means condition
is reset to as good as new. This in turn means
that subsequently, its apparent age restarts at 0. If
a mid-life failure has occurred it is assumed that
a minimal repair is sufficient, and the condition
remains unchanged. Furthermore, the component
may be preventively retired (replaced) to reset the
condition to as good as new (Toftaker et al., 2022).
In the lack of more detailed models, the time
until preventive replacement Tpm is assumed to be
exponentially distributed with rate λpm.

In consequence the functional state of the com-
ponent follows a semi-Markov model as illus-
trated in Figure 1. This semi-Markov model was
by Toftaker et al. (2022) simplified to a Markov
model as illustrated in Figure 2. This was achieved
by two assumptions: First, that within the analysis

1, s(t)

0, w

0, ml

fTw(s(t))

λml

μ

λpm

μ

Fig. 1. A diagram illustrating the probabilistic failure
model.

1, s(t)

1, s = 0 0, w

0,ml

λw(s0)

λml

μ

λpm

μ

λml

Fig. 2. A diagram illustrating the simplified proba-
bilistic failure model.

horizon the technical condition does not change
significantly, so that the time to wear-out failure is
exponentially distributed with a rate

λw(s0) =
FTw(s0 + 1)− FTw(s0)

1− FTw
(s0)

(5)

Second, that after the component is replaced, the
probability of wear out failure is negligible. Let
Nt1,t2 denote the number of failures within the
time period t1 to t2. It can be derived (Toftaker
et al., 2022) that, with λw = λw(s0), the expected
number of wear out failures within the next year,
is given by

E(N0,1) =
λw

λw + λpm
(1− e−(λw+λpm)). (6)

3.1. Extended time horizon

To extend the component reliability model to
a longer time horizon we propose a recursive
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scheme. First, we recognize that the expected
number of wear-out failures for component j in
year t is given by the law of total expectation as

E(Nt,t+1) =
∞∑

s=0

E(Nt,t+1|St = s)P (St = s)

where St is the apparent age of the component
at the end of year t, and E(Nt,t+1|St = s) is
given by (6) with λw = λw(s). We introduce the
time-dependent failure frequency ωw,t to denote
the expected number of wear-out failures in year
t.

Figure 3 illustrates the process determining the
development of the apparent age S of a power sys-
tem component. The apparent age of a component
at the present time is denoted s0, and we have that
P (S0 = s0) = 1.

The recursive expression for the probability of
having a certain apparent age at the beginning of
year t is then

P (St = s) =
∞∑

s′=0

P (St−1 = s′)Qs′,s,

where Qs′,s = P (St+1 = s|St = s′). Exploiting
the fact that during year t the component can
either become 1 year older or replaced it can be
derived that, for t > 0,

P (St = 0) =
t∑

t′=0

[
P (St−1 = t′)Qt′,0

+ P (St−1 = s0 + t′)Qs0+t′,0
]
.

and for s �= 0,

P (St = s) = P (St−1 = s− 1)Qs−1,s.

This calculation procedure is illustrated up to t =

2 as an event tree in Figure 3.
The probability to transition from apparent age

s to apparent age 0 within the next year from time
t to time t+ 1:

Qs,0 = P (St+1 = 0|St = s)

= 1− e−(λpm+λw(s)).

The probability to transition from apparent age
s to apparent age s + 1 within the next year from
time t to time t+ 1:

Qs,s+1 = 1−Qs,0

Fig. 3. A simplified event tree illustrating how the
apparent age St of a power system component develops
with time t.

Finally, a overall time-dependent failure rate λt

for the transformer, considering mid-life failures
as well as wear-out failures, is derived from ωw,t

using the equations presented in Sec. III.C and
III.D of Toftaker et al. (2022). This failure rate
can then be used as input data to the analyti-
cal power system reliability analysis to estimate
annual reliability indices. In this way, each of
the years of the analysis horizon can be evalu-
ated independently by the power system reliability
analysis. If the operating states are assumed to be
identical for each of the years, the contingency
analysis only has to be carried out for one of the
years, and the results for the interrupted power can
be reused for all the other years.

3.2. Sequential Monte Carlo simulation
integrating condition dependence

The component reliability model in Section 3 is
also integrated in a sequential Monte Carlo simu-
lation. This section presents an algorithm to sam-
ple the functional state of a component following
the process illustrated in Figure 1. Assuming that
the component starts out in an in-service state,
the time of the next transition is equal to the
minimum of the 3 latent times, Tpm, Tw, Tml. The
algorithm therefore samples the times from their
respective distributions. Tml and Tpm are sampled
from an exponential distribution. A sample of Tw

is obtained by rejection sampling (Wells et al.,
2004) where a proposal value s′w is sampled from



1696 Proceedings of the 32nd European Safety and Reliability Conference (ESREL 2022)

FTw
(s) and then accepted if s′w > s0. It is as-

sumed that an efficient procedure is available to
sample from FTw

(s), which is the case if FTw
(s)

is from a standard class of distributions like the
Normal or Weibull distributions. If a preventive
replacement has happened the condition of the
component is set to as good as new, i.e., s0 = 0. If
a failure has occurred the algorithm continues by
simulating the time to repair Tr ∼ Exp(μ). When
a repair is done (or the component is replaced
in case of a wear-out failure), the condition of
the component is updated. In the case of wear-
out failure apparent age is set to 0 while in the
case of mid-life failure s0 is the same as it was
immediately before the failure occurred.

4. Case studies

To illustrate the proposed methodology and val-
idate it against a MCS method, a case study is
carried out based on the one presented by Foros
et al. (2022). To demonstrate how the framework
can be applied to support decisions in asset man-
agement two scenarios, scenario 0 and scenario 1,
were analyzed. Scenario 0 represent no planned
renewal, while scenario 1 represent renewal of the
transformer with the worst condition.

The test system considered for the case study,
displayed in Figure 4, is the same 25-bus test
network considered by Foros et al. (2022), and
we refer to Foros et al. (2022) and Sperstad et al.
(2020) for more details. Data for the 208 oper-
ating states used in this case study are given in
Foros et al. (2022). The same operating states are
assumed to apply for all years of the analysis hori-
zon. The system includes eight power transform-
ers for which condition-dependent failures will be
integrated in power system reliability analysis in
the following. Where not otherwise stated, input
data from Sperstad et al. (2020) are used in the
case study.

We evaluate the reliability of the test system by
estimating the energy not supplied for a 5 year pe-
riod. Scenario 0 was evaluated using both the an-
alytical approach described in Section 2.1 and the
Monte Carlo approach described in Section 2.2,
while scenario 0 was evaluated with the analytical
approach only. To establish a transformer reli-

Fig. 4. Test network considered in the case study
(adapted from Sperstad et al. (2020))

ability model we adopt the failure model from
Foros and Istad (2020) to represent the probability
distribution of time to wear out failure. Other
parameters of the model are the rate of preventive
replacement λpm = 0.033, the rate of mid life
failures λml = 0.38, the expected time to wear out
failure E(Tw) = 60 years, the standard deviation
of time to wear out failure σw = 18 years. For
simplicity, scenario 3 from Foros et al. (2022),
where failure rates are not calibrated to average
national statistics, is considered for the case study.

The eight transformers in the test system are
assigned a condition similarly as by Toftaker et al.
(2022). To obtain realistic transformer condition
data the set of 18 Norwegian transformers stud-
ied by Foros and Istad (2020) are used. Eight of
these transformers are selected for the test sys-
tem. To emphasize the importance of component
condition, the transformer in worst condition has
been assigned to the branch in the test network
that has the biggest contribution to annual ENS
(branch 29). The other transformers are arbitrarily
assigned. For scenario 1 the transformer on branch
29 is replaced, which is represented by setting the
health index of this transformer to 1.

4.1. Results

How the condition-dependent transformer failure
frequency develop with time over the analysis
horizon is shown in Figure 5. The solid curves
show results for the analytical approach and the
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dashed curves show results of the MCS approach.
The MCS results are the estimates of the expected
rate of occurrence of failures based on 6 mil-
lion MC samples. For most of the transformers,
the discrepancy between the results are imper-
ceptible. The source of the small discrepancies
for the transformers with HI = 0.78 and with
HI = 0.94 have been identified as the rounding
to integer apparent ages in the analytical approach.
The main trends in the figure are i) that the fail-
ure frequency increases with decreasing condition
(health index) and ii) that the failure frequency
increases slightly with time. However, one can
also observe iii) that for the transformer with the
worst condition, the failure frequency eventually
starts decreasing with time. The reason for this
behaviour is that a transformer in a bad condition
has a significant probability of being replaced due
to wear-out failure during the next few years, after
which it will be replaced by a new transformer
with much lower failure rate. This effect is explic-
itly captured in the proposed analytical approach
as well as in the MCS approach.

Fig. 5. Bottom: Time development of transformer
failure frequencies due to degradation according to
the analytical approach (solid) and the MCS approach
(dashed). Top left: Failure frequency for transformer
with HI = 0.65, with magnified y-axis.

Expected energy not supplied for each year es-
timated by the analytical approach and the Monte
Carlo approach is shown in Figure 6. The analyt-
ical approach shows that ENS increases slightly

Fig. 6. Top: Annual expected energy not supplied for
scenario 0 calculated by the analytical approach. Bot-
tom: Annual expected energy not supplied. Monte Carlo
results presented with 95% confidence intervals.

through the time horizon. To better show this in-
crease the same values are plotted with a magni-
fied y-axis in the upper plot in Figure 6. Results
of the Monte Carlo method is shown with 95%

confidence intervals, which are obtained by boot-
strapping (Efron and Tibshirani, 1985) with 200

bootstrap samples. The Monte Carlo approach is
not precise enough to show this increase. Since the
width of the confidence intervals serves as a lower
bound on the accuracy of the analytical approach,
the MC approach does not verify the result further.
It is possible to achieve better precision by using a
larger sample size, but as precision is proportional
to the square root of the sample size, this is not
an efficient strategy to achieve significantly better
precision.

Annual ENS for scenario 1 is also shown in
Figure 6. Renewal of the transformer on branch 29
represents a significant reduction in annual ENS
through the analysis horizon.

5. Conclusions and further work

This paper has presented an analytical approach to
power system reliability analysis accounting for
time dependencies in the technical condition of
components. The methodology has been demon-
strated on a case study accounting for power
transformer condition information and has been
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validated by comparing it with time-sequential
Monte Carlo simulations. For the case that was
considered, inaccuracies due to approximations in
the analytical approach are negligible compared
with the statistical uncertainty in the Monte Carlo
simulation results. The changes in failure rates
due to degradation over a 5-year analysis horizon
are relatively small, and the resulting time depen-
dence in the overall reliability of supply is weak.
It is conceivable, however, that the importance of
accounting for time-development in component
condition would be greater for a case (including
network and operating state data) where the de-
graded transformers have a stronger impact on the
reliability of supply.

The results indicate that the proposed method-
ology can be a computationally viable alterna-
tive to MCS methods. At least, this is the case
if estimating expected values are sufficient, and
especially when it will be too time consuming to
assess the impact of different scenarios with suf-
ficient statistical precision using MCS. The case
study considered a very reliable power system
where the expected energy not supplied is very
low and a relatively high number of MC iterations
is needed. There is however potential for imple-
menting variance reduction techniques to improve
the computational efficiency of the MCS.

The presentation of the methodology proposed
in this paper has highlighted several relevant ex-
tensions. Some of these extensions would be less
cumbersome to implement in a MCS approach
than in an analytical approach. First, the method-
ology could easily be extended to incorporate dif-
ferent outage times for wear-out failures and mid-
life failures. If longer outage times are assumed
for wear-out failures, this could reduce the ac-
curacy of the analytical approach. In addition, a
MCS approach is needed to capture the inherent
variability in the outage times. A MCS approach
can also more naturally integrate the simulation of
asset management strategies using less simplistic
models than the preventive retirement model as-
sumed here. An interdependent direction of future
work is to develop and integrate models for the
time development and uncertainties in component
condition over the extended analysis horizon.
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