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The remaining useful life of components is crucial in maintenance planning. However, it is difficult to determine
whether or not a model is reliable and trustworthy. There is no clear instruction about how to evaluate a remaining
useful life prediction model since the output results are not displayed in the physical system. Furthermore, the
models may generate an inaccurate prediction due to missing or outlier data. The idea of resilience is presented to
evaluate the performance of the remaining useful life prediction model in order to increase model dependability and
robustness. This study offers a definition for the resiliency of remaining useful life prediction models. The study
then provides methods for evaluating the models used for the remaining useful life prediction. The work could serve
as a springboard for further research into topics such as resilience and life prediction models.
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1. Introduction

The remaining useful life (RUL) of a component
is the amount of time it can be used before it
needs to be maintained or replaced, Vaidya and
Rausand (2011). The prediction result is crucial
for plans and activities related to maintenance.
According to search results from the ”Web of
Science”, there are about 13,000 publications with
the topic of ”remaining useful life” by the end
of 2021. Furthermore, the number of articles is
rising at a constant rate from 1989 to 2021. The
results indicate the significance of RUL and the
research interest. Physical model-based methods,
statistical methods, and condition monitor data-
driven methods are all utilized to predict RUL, Liu
et al. (2018). In practice, these algorithms may fail
due to missing or outlier input data caused by sen-
sor’s failure, communication failure, or hacking.

Therefore, methods must be developed to assure
the reliability or robustness of these models when
there are disruptions caused by input data. The
goal is to ensure that the models work properly not
just in normal conditions but also when external
interruptions occur. Resilience becomes a better
word to characterize the situation and evaluate the
performance of models than reliability and robust-
ness. Resilience is initially defined as a person’s
ability to bounce back from adversity, Cyrulnik
(2009). Some studies use the term to characterize
the ability of a system to bounce back, robustness,
graceful extensibility, and architectures for long-
term adaptability, Woods (2015). The study of
resilience could then help systems to avoid the
influence of disruptions and quickly return to a
steady-state after interruptions, Gu et al. (2015).
Only a few studies have used resilience to evalu-
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ate statistical or data-driven models. Vrabic et al.
propose an intelligent agent-based architecture to
enhance the resilience of digital twins in manu-
facturing which uses a learning agent to compare
the accuracy of digital twins, Vrabič et al. (2021).
Clark et al. present an assessment metric for the
resilience of the cyber-physical system to due with
cyber-attack, Clark and Zonouz (2017). Accord-
ing to the ”Web of Science” research results, more
than 139,000 publications have been published on
resilience by the end of 2021, but only a few of
them focus on resilience models. Furthermore, the
outcome of RUL prediction is typically a lifetime
distribution, which is not always straightforward
to compare to the genuine lifespan distribution.
The objective of the paper is to bridge the gap
between real-world needs and the existing meth-
ods. Our research presents a method for evaluating
the resilience of RUL prediction models and im-
proving forecast reliability. The proposed method
uses the accuracy of prediction as the indicator to
evaluate the resilience of RUL prediction models.
The remaining parts of the paper are organized

as follows: Section 2 presents variance definitions
of resilience in different systems, and frequently
used RUL prediction models according to our
literature review. Section 3 presents the concept
of resilience for RUL prediction. Then it proposes
the method to evaluate the models used for re-
maining useful life prediction. Section 4 gives an
example based on proposed methods. Section 5
concludes the paper.

2. Context and background

There are a variety of models that can be used
to forecast RUL for various systems. Some of the
models are linked to an online system to improve
prediction accuracy. The online data, on the other
hand, cause external interruptions to the RUL pre-
diction models. Some questions must be answered
before definitions for resilience RUL prediction
models can be given.

• What is the definition of resilience for other
systems?

• What types of models are used to predict RUL?
• Why is resilience introduced to evaluate the

models?

2.1. Definition for resilience of system

Resilience has been applied to a variety of tech-
nological systems, including civil infrastructure
systems, Gay and Sinha (2013), energy systems,
Wang et al. (2015), and transportation systems,
Wan et al. (2018). For different systems, there are
multiple definitions. According to Erik Hollnagel,
resilience refers to the ability of a system to retain
a healthy state over time while being exposed to
negative and damaging events, as well as its ability
to stay within a safe state during adverse condi-
tions, Hollnagel et al. (2006). The concept of re-
silience in this paper is based on Erik Hollnagel’s
work, but it also considers the ability of a system
or model to recover from shock or disturbances.
The approaches of resilience evaluation include
resilience metrics, Cai et al. (2018), quantitative
approaches, Hosseini et al. (2019), qualitative
approaches, and the resilience framework which
combined technical and social factors, Jain et al.
(2018). The resilience factor is present throughout
the life cycle of a system, which includes the
normal or pre-hazard phase, the hazard period,
and the recovery period, Cheng et al. (2021). As
a result, to improve system resilience, it must first
determine how to assess system resilience. The
methods could be quantitative, qualitative, or a
combination of both approaches. Second, it should
look at the complete life cycle of a system to
see where it might increase its resilience. The
improved points could be the system’s ability to
survive a disruptive external event. It could also
have a high repair capability, allowing it to return
to its original state quickly and at a lower cost. The
failure mechanism for RUL prediction models dif-
fers from other models. Furthermore, evaluating
the models is challenging because most of them
are based on probability theories, and it is tough
to define a standard. As a result, the definition of
RUL prediction model’s robustness must be given
with caution.
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2.2. Models for RUL prediction and
sensor errors

There are several types of RUL prediction models.
These are experience-based models, data-driven
models, and physics-based models. Hybrid prog-
nostics models, which mix two or more types of
models, are also available, Liao and Köttig (2014).
All these models are created based on the existing
information of the system. The quality of data
is critical for data-driven related models to pro-
duce high-quality output. With improved sensors
and communication technology, it is feasible to
improve the prediction results during operation
since there is more knowledge about the system
condition based on real-time sensor data, Si et al.
(2011). However, sensor errors may result in in-
correct predictions, which is much worse than
offline prediction. There are many researchers
working on error detection in sensors. The most
common errors for sensors are outliers and miss-
ing data. The three most popular error detection
methods are principal component analysis, artifi-
cial neural network, and Ensemble Classifiers, Teh
et al. (2020). To ensure the quality of RUL pre-
diction models, strategies to reduce the negative
effects of outliers and missing data must be devel-
oped. This condition is the same as the definition
of resilience, hence resilience is used to evaluate
models and assure the accuracy of predictions.

3. Resilience of RUL prediction

3.1. Definition for resilience of RUL
prediction models

Resilience is the ability of a system or piece of
equipment to rebound from failures. The most
likely failure of RUL prediction models is consid-
ered as incorrect outcomes from models. It could
lead to an overestimation or underestimation of
the RUL in a system. To avoid additional system
loss, the failure must be discovered and addressed
as quickly as possible.
The following definitions of RUL prediction

model’s resilience are provided based on the prior
discussion of resilience in Sections 1 and Section
2. The resilience of a RUL prediction model is
defined as the capacity of a model to retain its

planned quality on its own. There are a few points
that distinguish the definition of resilience from
other concepts, as follows:

• Remark 1 Resilience is not the same as reliabil-
ity. The probability of a system’s success at any
time is known as reliability. While resilience
refers to the ability of a system to continue its
function in the face of a shock or interruption.

• Remark 2 The terms ”resilience” and ”robust-
ness” are not interchangeable. The ability of
a system to withstand disruptions during op-
eration is known as robustness, Wieland and
Wallenburg (2012). While resilience refers to
the ability of a model to continue its intended
function, which includes the ability to with-
stand disturbance and recover from the shock.

• Remark 3 It is a continuous process to evaluate
the resilience of RUL prediction models.

3.2. Evaluation of resilience of models

The output of a RUL prediction model is the
distribution of expected failure time. Since the
estimated RUL cannot be found in the real system,
the method proposed by Vrabic et al. (Vrabič et al.
(2021)) cannot be used directly. Therefore, the
historical lifetime of a system is used to compare
with the prediction result. The statistical distance
between these two distributions could be used as
the indicator of the performance of a model. If
these two distributions are in perfect coincidence,
then the prediction result of the model is fulfilled
with knowledge of the system which means the
performance of the model is good. Otherwise, the
accuracy of the model is low. There are many
methods to evaluate the distance between two dis-
tributions, such as Euclidean distance, Manhattan
distance, and standardized Euclidean distance.
Moreover, the result of RUL prediction is used

to make maintenance decisions. As a result, a
meaningful result is a prediction of the most likely
failure time of the subject that is as close to the
true value as possible. Because the sum of prob-
ability is 1 for both distributions, the RUL of the
highest probability parts will be compared. Two
factors must be examined in this scenario. The
first is the RUL values that are most likely to
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Fig. 1. Resilience of RUL prediction model

occur. The second is the associated probability of
the value. The bounds of the most likely values
must be explicitly established based on experi-
ence. Equation (1) can be used to compute the
average RUL.

RULavg =

∑n
i=1 Pri ∗RULi∑n

i=1 Pri
(1)

where Pri presents the probability of considering
RULi.
Then the accuracy of prediction could be calcu-

lated with Equation (2).

a(t) = 1−
∣
∣
∣
∣
RULpre.(t)−RULhist.(t)

RULhist.(t)

∣
∣
∣
∣ (2)

where RULpre.(t) is the average RUL calculated
according to the prediction of models at time t,
RULhist.(t) is the average RUL calculated ac-
cording to historical data at time t. The maximum
value of the accuracy is 1 and it is possible to be
less than 0.
If the prediction is close to the true value, the

result of accuracy is close to 100% which means
the performance fulfills the historical data. If the

prediction is far from the historical data, it means
the system is not fitted with the experience. Then
there is a risk to use the result from the model
without further analysis. For a system with suf-
ficient data and well-developed RUL prediction
models, the performance of the model must be
stable and keep a high level. Hence, if there is
a shock to the system, the performance will de-
crease. The shock might be caused by the working
load changing in a real system or by external
disruption. However, if the performance could not
return to normal states automatically, it means the
accuracy of the model is decreased. The resilience
of the model could be calculated according to the
loss of accuracy which is the area between 1 and
the loss of accuracy of the model.
Figure 1 is schematic diagram of resilience

evaluation for RUL prediction. The blue line rep-
resents the accuracy of the original prediction,
the yellow line represents the accuracy of the
prediction, which is disrupted without recovering,
and the red line represents the accuracy of the
prediction that recovers from a disturbance. As
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shown in the graph, the original prediction accu-
racy is growing over time. This is because there is
more data regarding the degradation entering the
model as the condition monitoring continues. The
prediction results may be more accurate than they
were at the start. When the system is disrupted, the
model is misled by the new data that arrives. Thus,
the performance of prediction is decreased. If no
more steps are done, the accuracy of the model
will not recover or will recover extremely slowly
to the normal state. Hence, inaccurate results may
lead to incorrect maintenance decisions, resulting
in increased maintenance costs. When considering
the resilience of RUL prediction, it is easy to see
when the prediction results are from knowledge.
Then steps could be taken to improve the accu-
racy of prediction to a standard level, preventing
further losses because of poor decisions.
In comparison to traditional methods, the above

method considers more information of the predic-
tion results and past deterioration knowledge. It
could conduct a comprehensive review of model
performance and then encourage consideration of
disruptions in the design phase of the RUL pre-
diction models. For RUL prediction models, the
technique could reduce the impact of missing and
outlier data.

4. Case study

We consider a system with continuous sys-
tem monitoring and the predicted RUL is used
for maintenance decisions. The indicator which
presents the degradation level has been selected
according to experience. The system starts from a
perfect state and the performance is reduced dur-
ing operation with increased indicators. Assuming
the degradation process follows an exponential
distribution. In addition, there is noise following a
normal distribution with parameters μ and σ. The
degradation process is present as Equation (3)

Y (t) = eλt + ε(t) (3)

where λ is the parameter of exponential distri-
bution and noise ε(t) follows normal distribution
N(μ, σ2).

Assume parameters λ = 0.01, μ = 0.07, σ =

Fig. 2. Simulated historical of lifetime

0.6, and threshold L = 10. Then the probability
density function (pdf) of system lifetime could be
obtained by simulating the degradation process.
Repeating simulation by 10,000 time, the pdf of
system failure time is presented as Figure 2.
On the other hand, a RUL prediction model is

tested with previously generated data according to
the evaluation method mentioned in Section 3.2.
The model is provided by MATLAB - Predictive
Maintenance Toolbox release R2021b The Math-
works, Inc. (2021). One group of simulated data
is picked and used in the MATLAB toolbox. The
prediction result of the last data set is shown as
Figure 3. The upper part of the figure shows the
real health indicators from the beginning until the
current state compared with the current degrada-
tion model. The lower part of the figure shows the
distribution of the last day’s prediction with the
confidence interval.
To simplify the calculation, only the highest

probability of RUL is used to calculate the accu-
racy of prediction. According to Equation (1) and
(2), the plot of accuracy is calculated and shown
as the blue line in Figure 4. Data set before 100
is used as training data so they are not considered
here. From the figure, the accuracy of the model
fluctuates after the training process and becomes
stable after data set 150. It means the accuracy
of prediction is stable when there is enough data
inputted in the model. In addition, the model im-
proves the accuracy when there is more data and
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Fig. 3. Prediction result of the last data set

keeps the accuracy level around 95% when it is
stable.
Now, assume there is a shock to the system

which makes the system missing data sets from
151 to 160. Thus, the system repeats the previ-
ous data which is 150 to make predictions until
the real data enters. The accuracy of the model
decreased. If there is no action to the model, the
accuracy of the model could recover by itself
slowly as shown with the red line of Figure 4.
However, if the abnormal data is noticed, then
the indicator could be corrected on time and help
the accuracy back to a normal state earlier. The
correction process is shown as the yellow line
in Figure 4. The resilience of the model could
be obtained by calculating the area between the
accuracy curve and 100% accuracy. From the fig-
ure, the comparison resilience result of these three
situations is the resilience of the original situation
is larger than the resilience of indicator correction
after shock, and larger than resilience with the
shock of indicators if the resilience is sorted by
size.
Therefore, the resilience of the model could be

evaluated with the accuracy of the prediction of
RUL. The accuracy is increased after shock by
itself. But if the reduced performance could be
noticed earlier, it is possible to increase resilience
and improve the performance of the system.

Fig. 4. Resilience of system during shock

5. Conclusions

In this paper, the concept of resilience is intro-
duced for RUL prediction models. It describes
the current state of the art in resilience and RUL
prediction models and proposes a definition of
RUL prediction model resilience, based on the
literature review. Methods for evaluating the re-
silience of RUL prediction models are proposed
and investigated. Finally, the accuracy of predic-
tion could be used to assess the resilience of RUL
prediction models. The method requires sufficient
knowledge about the remaining useful life and an
online monitor of resilience. When operational re-
silience is reduced, an analysis must be conducted
to identify if a system failure has occurred. If
this is not the case, then data interpolation can
be employed to assist RUL prediction models in
maintaining their intended function.
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