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Hydrogen has the potential to channel a large amount of renewable energy from the production sites to the end
users. Nevertheless, safety aspects represent the major bottleneck for its widespread utilization. The knowledge of
past hydrogen-related undesired events is fundamental to avoid the occurrence of similar accidents in the future.
Databases such as HIAD 2.0 and H2Tools are dedicated to those accidents, but the scarcity of structured and
quantitative information makes it difficult to apply advanced data-driven analyses based on Machine Learning (ML).
In this paper, undesired events related to the hydrogen value chain were selected from the HIAD 2.0 and MHIDAS
databases. These records were collected in a structured repository tool, namely Hydrogen-related Incident Reports
and Analyses (HIRA). The definition of its features is based on a critical comparison of the primary reporting
systems, and an analysis of the literature regarding H2 safety. Subsequently, text mining tools were used to analyze
the event descriptions in natural language, extract relevant information and data, and sort them in the database.
Finally, the new database was analyzed through Business Intelligence (BI) and ML classification tools. Data-driven
analyses could help identifying valuable information about H2-related undesired events, promoting a safety culture,
and improving accident management in the emerging hydrogen industry.
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1. Introduction

Hydrogen has been indicated by the European

Commission (EC) as one of the most promis-

ing energy carriers to reduce greenhouse gas

emissions and make the transport sector and

power generation environmentally sustainable in

the forthcoming years (EC, 2018). It can be pro-

duced by water electrolysis (green hydrogen) or

by methane steam reforming coupled with car-

bon capture and storage (blue hydrogen) and

used in fuel cell systems with elevated efficiency

and near zero pollutant emissions (Ustolin et al.,

2022). Despite its inherent advantages, H2 has

several safety issues related to its peculiar physio-

chemical properties (i.e., the broad flammability

range and the low ignition energy) and its ability

to permeate and embrittle most metallic materials.

These properties have caused several undesired

events in the past, with severe consequences on

humans, equipment, and environment. The knowl-

edge of these accidents and a deep understanding

of their root causes are fundamental to avoiding

similar events in the future.

Hence, safety reporting systems are necessary

to collect information on H2-related incidents,

accidents, and near-misses, thus maximizing the

lessons learned and the return of experience from
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their analysis. Machine Learning techniques can

facilitate this process thanks to their capability

of dealing with large datasets, extracting rela-

tions among attributes, and predicting incident

outcomes in terms of fatalities, injuries, and fi-

nancial losses (Stefana et al., 2022). Dedicated

databases for H2-related events, such as the Hy-

drogen Incident and Accident Database (HIAD

2.0) and the Hydrogen Incident Reporting Tool

(H2Tools), are already publicly available. They

provide meaningful information for classical sta-

tistical analyses, and, in some cases, they offer

in-depth cause investigations. Nevertheless, the

scarcity of quantitative information, the lack of

a common taxonomy, and ambiguous features’

definitions represent important limitations. These

drawbacks make it difficult to apply advanced

data-driven analyses based on ML.

In light of this, the present study aims at cre-

ating a systematic database for hydrogen-related

accidents, which allows the adoption of ML

tools to make predictions useful for enhancing

hydrogen safety management. Firstly, the exist-

ing safety reporting systems, whether hydrogen-

specific or generic, have been studied to analyze

their strengths and limitations. Secondly, a new

database, namely Hydrogen-related Incident Re-

ports and Analyses, has been created by selecting

proper features and defining the categories unam-

biguously. Hence, the database has been studied

through Business Intelligence (BI) tools.

1.1. Existing accident databases

Several structured databases for major indus-

trial accidents are already available. The French

database Accident Reporting Information Analy-

sis (ARIA) (BARPI, 2023) collects all types of

events which are considered dangerous to human

health, environment, or public safety, and con-

tains 395 H2-related events. The European Major

Accident Reporting System (eMARS), created by

the EC Joint Research Centre (JRC), includes 96

hydrogen releases and near misses (EC, 2023).

The British Major Hazard Incident Data Service

(MHIDAS) contains 104 hydrogen-related events

which resulted in an ”offsite” impact. The ac-

cident database of the Institution of Chemical

Engineers (IChemE, 2023) provides a brief de-

scription and the root cause analysis of 40 hy-

drogen releases, which occurred in the chemical

and process industry. The National Response Cen-

tre (NRC) (EPA, 2023) is an American accident

database that has been regularly updated from

1981 to 2001 and includes 120 H2-related events.

The Failure and Accidents Technical Information

System (FACTS) collects detailed information on

more than 481 hydrogen releases (Campari et al.,

2023).

In addition, three H2-specific safety databases

are already in place and another one is under

development. HIAD 2.0 is a multi-use platform to

derive information for risk assessment and lessons

learned. It includes a data entry form with a com-

bination of narrative fields and predetermined op-

tions. The lack of quantitative information only

allows for deriving high-level conclusions and

general best practices (Wen et al., 2022). H2Tools

is curated by the Pacific Northwest National Labo-

ratories (PNNL) and collects high-quality reports

to get an understanding of the event, its root

causes, consequences, and lessons learned. Data

fields with predetermined options are often too

generic to create reliability data useful for quan-

titative risk assessment. The National Renewable

Energy Laboratory (NREL) collects failure and

maintenance data from 44 hydrogen fueling sta-

tions and publishes anonymous reports with data

regarding safety, maintenance, and reliability of

industrial equipment. However, operating condi-

tions and failure causes are partially missing and

not adequately investigated. Finally, the Center

for Hydrogen Safety (CHS) is developing a tool

for reporting hydrogen equipment failures and

obtaining failure rates specific to these compo-

nents. The form includes information regarding

the involved equipment, H2 state, consequence,

system response, and mitigation strategies. Never-

theless, operating conditions, location within the

plant, component age, and failure mode are not

considered. Hence, it is not possible to attribute

a component failure rate to a specific failure mode

(West et al., 2022).

Table 1 summarizes the main characteristics of

the existing H2 safety databases.
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Table 1. Comparison of the existing hydrogen safety data collection tools

General feature HIAD 2.0 H2Tools NREL CDPs CHS Failure Rates

Records collected 655 events 221 events 44 fueling stations Unknown
Year of creation 2004 2006 2020 Under development
Public access to data Yes Yes Partial Unknown
Initiating event Yes Yes Yes Yes
Location Partial No Yes Yes
Type of application Yes Yes Yes Yes
Primary cause Yes Yes Yes No
Contributing causes Partial Yes Yes No
Release size Yes No Partial Yes
Operating conditions Yes Yes Yes Partial
Components involved Yes Yes Yes Yes
Component size Partial No Partial Yes
Site inventory No No Yes Partial
Confinement Yes No No Yes
Failure symptoms No Yes No No
H2 detection No No Yes Partial
Ignition Yes Yes No Yes
Consequences Yes Yes Yes Partial
Mitigation systems No No No Yes
Lessons learned Yes Yes Yes No
Recurrence frequency No Yes No No
Maintenance No No Yes Partial
Regular reporting No No Yes Yes
Data quality check No No Yes Unknown

2. Methodology

A new structured database of H2-related undesired

events has been created to achieve the objective

of this study. HIAD 2.0 and MHIDAS were se-

lected as primary sources to collect the relevant

records. The former represents the main source for

hydrogen accidents, while the latter has been cho-

sen because its records are not included in HIAD

2.0. Since MHIDAS is a generic data source, we

filtered the events by searching for the keyword

“hydrogen” in the released substance field and in

the event description. Among these records, there

are incidents or accidents classified as H2-related

ones although hydrogen was not directly respon-

sible for the undesired event. Consequently, we

defined a set of inclusion and exclusion criteria to

ensure the quality and consistency of the data. For

instance, records that occurred in the H2 supply

chain (e.g. production, storage, transportation, and

utilization) or involved hydrogen-specific tech-

nologies or other equipment dedicated to H2 (e.g.

flanges, piping, compressors, etc.), were deemed

relevant along with releases of pure H2 or H2-

rich mixtures. On the contrary, records concerning

refineries (e.g., desulphurization units), or chem-

ical plants for chlorine and ammonia production

were excluded, as well as events in which H2

was formed as a by-product of unwanted reac-

tions, or car accidents not directly caused by the

fuel-cell powertrain. The inclusion and exclusion

criteria were applied by reading the records’ full

descriptions and analyzing further available infor-

mation. The included events were merged into a

unique database. Dates, places, primary event IDs,

sources, and full event descriptions were com-

pared to identify and remove any duplicates. Then,

the data were structured through a set of features,

representing the columns of the database. A fea-

ture, whether numerical, categorical or textual, is

a “measurable property of an object or event with

respect to a set of characteristics”, and provides
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a machine-readable way to describe the relevant

objects (ISO, 2022). For each feature, labels indi-

cating the classes of the object under investigation

were defined (Tamascelli et al., 2020).

Incident records usually have textual descrip-

tions, which contain a large amount of hidden

information. For this reason, we used Text min-

ing (TM) to extract useful information from un-

structured or semi-structured sources through the

identification of trends and patterns (Feldman and

Sanger, 2007). In this case, it was required to

eliminate unwanted elements and redundancies to

extract only the relevant information. The text pre-

processing comprehended text reduction, trans-

formation, filtering, and normalization. In addi-

tion, the text was decomposed into tokens (i.e.,

words or phrases), which represent the key ele-

ments for the classification of the features of the

new database. The objective was to automate the

database completion by mining information from

the textual descriptions of the events. The method-

ology to create the HIRA database is depicted in

Figure 1.

Fig. 1. Methodology for the incident database cre-
ation

The effectiveness of the TM process was tested

by assigning the correct category of certain fea-

tures to each event through machine learning

tools. Three models were used for this classifi-

cation task, optimized, and compared: Artificial

Neural Network (ANN) (Štohl and Stibo, 2019),

Logistic Regression (LR) (Maalouf, 2011), and

Random Forest (RF) (Fawagreh et al., 2014).

ANN was optimized with 70 neurons in hidden

layers, ReLU activation function, and 60 maxi-

mum iterations; the Adam optimization function

was used as a solver. C parameter equal to 550 and

Ridge regularization were set for the LR model.

Finally, RF was optimized with 48 trees and 65

subsets of features.

Then, Business Intelligence tools were used

to analyze the structured information collected

into the HIRA database. BI uses the Extract-

Transform-Load (ETL) method to aggregate and

systematize structured and unstructured data

within a unique data management system (Mi-

crosoft, 2023). In this case, the key steps of the

ETL process are (Trujillo and Luján-Mora, 2003):

• selecting the sources for extraction (i.e.,

HIAD 2.0 and MHIDAS databases);

• getting the data from the source location;

• validating and cleaning the data by intro-

ducing predefined inclusion and exclu-

sion criteria;

• transforming the sources by systematiz-

ing the incident records through new fea-

tures and labels;

• joining the sources of information in the

HIRA database;

• selecting the target to load (e.g., the op-

erational status);

• mapping source attributes to target at-

tributes.

BI tools allowed creating dynamic dashboards,

charts, graphs, and maps of data to visualize the

results.

3. Results and discussion

By combining the 630 events collected in HIAD

2.0 and the 104 H2-related accidents retrieved

from MHIDAS, we obtained a preliminary set
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of 734 events. The application of inclusion and

exclusion criteria, and the identification of dupli-

cates allowed creating a new database with 325

events. The labels were defined to ensure clarity

and avoid redundancies and repetitions. The inclu-

sion of structured information into newly defined

categorical fields allowed automatized analyses

through BI and the adoption of artificial intelli-

gence tools. For clarity, Table 3 summarizes the

structure of HIRA.

Certainly, the compilation of the fields char-

acterizing the database is time-consuming and

requires a great deal of effort. For this reason,

text-mining tools, aided by machine learning al-

gorithms, were employed to automate the process

of cataloguing information into the database. The

tokens were used for the database compilation,

which represents a classification problem. We

trained LR, ANN, and RF models for this purpose.

Then, three metrics, i.e., accuracy, precision, and

recall, were used to evaluate the performance of

these three classifiers. Accuracy indicates the frac-

tion of correct predictions (Eq. 1), precision refers

to the fraction of true positive predictions (Eq. 2),

and recall expressed the fraction of positive labels

correctly predicted (Eq. 3) (Seliya et al., 2009).

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

where TP indicates true positives, TN the true

negatives, FP the false positives, and FN the false

negatives.

We classified various features but, in this study,

we included only the operational status of the

facility at the time of the event. This feature spec-

ifies the type of operational condition (normal,

maintenance, startup, shutdown, etc.) of the facil-

ity when the event occurred. Accuracy, precision,

and recall for the three machine learning algo-

rithms are summarized in Table 2. In addition, the

confusion matrices for the three model are shown

in Figure 2.

Table 2. Evaluation metrics for the ML algorithms

Accuracy Precision Recall

LR 0.672 0.487 0.672
ANN 0.689 0.713 0.689
RF 0.689 0.474 0.689

Fig. 2. Confusion matrices for the operational status
classified through LR, ANN, and RF models

ANN outperforms the other algorithms in terms

of precision, while both Logistic Regression and

Random Forest have very low performances. In

addition, the confusion matrices highlight how LR

and RF are unable to correctly predict any mi-
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nority class (i.e., operational status different from

”Normal operations”). On the other hand, ANN

cannot label correctly the ”Loading/unloading

operations” and ”Testing operations”, but it is

more accurate in predicting ”Maintenance” and

”Startup/shutdown”. Nevertheless, the overall per-

formance of this model cannot be considered

fully satisfactory. Machine learning algorithms

can make reliable predictions when trained on a

large number of input data. Unfortunately, the lim-

ited operational experience with hydrogen along

with the low market penetration of hydrogen-

specific components results in a low number of

H2-related incidents. Another factor that further

reduces the amount of safety data is associated

with the regulatory framework regarding incident

and accident reporting. In the EU countries and

the United States, there are binding requirements

to report to the competent authorities all indus-

trial accidents involving dangerous substances to

develop cause analyses and safety investigations.

But this is not the case for most Asian, African,

and South American countries, thus leading to a

general under-reporting of H2-related undesired

events (Campari et al., 2023). Despite these lim-

itations, better performances will be achieved by

including more sources of information in the

HIRA database, such as H2Tools or the NREL

CDPs. Furthermore, we can expect that more

complete and detailed event descriptions will be

reported in the future, thus providing a larger set

of examples for the combined application of TM

and ML tools. Finally, the HIRA database could

be complemented with additional features related

to the existing safety culture of the organization

involved in the event. For example, a new feature

for the previous accidents at the facility can be

included, considering the information provided by

the NREL database.

The analysis of the database through BI tools

has proven that most H2-related events (i.e., 202

out of 325) occurred during the normal operations

of the plants. This is a predictable outcome since

an industrial facility operates under ”normal con-

ditions” for most of its working life. It is inter-

esting to note how 14.5% of the total events oc-

curred during maintenance activities, despite they

are normally carried out every five years (in the

case of hydrogen refueling stations and related

equipment) (ISO, 2020) or in extraordinary cir-

cumstances. These findings are shown in Figure

3.

Fig. 3. Operational status of the facility at the time of
the event

Most industrial components for hydrogen han-

dling and storage have not been designed specif-

ically for H2 applications or have been used for

other substances and adapted for hydrogen. Pre-

dictive maintenance of such components is of

the utmost importance to minimize the risk of

equipment failure and avoid the loss of contain-

ment. Despite this, the existing standards and

guidelines for inspection and maintenance plan-

ning are poorly adapted to equipment operating

in H2 environments. For instance, the risk-based

inspection and maintenance methodology does

not consider most hydrogen-induced material fail-

ures, thus increasing the uncertainty and affect-

ing the decision-making process (Campari et al.,

2022). In addition, the recommended maintenance

actions are often indicated by the equipment’s

producers, in the absence of a unified regulatory

framework. Under these conditions, the success

of maintenance operations mostly depends on the

experience and training level of the operators.

4. Conclusions

This study proposes an approach based on TM,

ML, and BI tools for learning from H2 accidents.
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Such approach is grounded on the creation of a

new database, called HIRA, containing 325 un-

desired events that involved hydrogen technolo-

gies or, more generally, occurred in the H2 value

chain. HIRA is characterized by 43 numerical,

categorical, or textual features and related labels,

which refer to different characteristics of items

and components, pieces of information about the

accident scenario, and quantitative data about

physio-chemical properties of H2. The database

was populated by applying TM tools, while three

machine learning techniques (i.e. LR, ANN, RF)

were employed to classify and predict relevant

accident features. For space constraints, this paper

only reports and discusses the results about opera-

tional status of the facility at the time of the event.

Finally, BI tools permitted creating dynamic dash-

boards to visualize the results. This approach

facilitates critical analyses of H2-related events,

thus allowing lessons learned for safely managing

H2 and the related components, technologies, and

plants. The consideration of other data sources and

the introduction of other accidents could further

enhance our approach and its results.
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Table 3. Features and labels in the HIRA database

Features Type Labels

Event ID Categorical ID 2 (ID 11 in HIAD); ID 5 (ID 2467 in MHIDAS).
Location Categorical America, United States, Richmond; Europe, Germany, Berlin.
Date Numerical 10/04/1989; 10/03/1978.
Full description Textual Initial hydrogen leak resulted from the failure of an elbow welded on the

pipeline body [...] the reactor collapsed damaging nearby equipment.
Application stage Categorical H2 Production; H2 Transportation; H2 Storage; H2 Utilization.
Detailed application Categorical Aerospace; Automotive; Chemical and petrochemical; Power genera-

tion; Laboratory; Maritime; etc.
Location Categorical Airport; Compression room; Laboratory; Loading area; Refueling sta-

tion; Storage area; etc.
Primary cause Categorical Component failure; Design error; External cause; Installation error;

Maintenance error; Operational error.
Secondary cause Categorical Absence of safety systems; Excessive temperature; H2 accumulation;

H2 embrittlement; Overpressure; Presence of ignitable mixtures; etc.
Primary event Categorical H2 condensation; H2 leakage; Formation of explosive mixture; etc.
Ignition Categorical Yes; No.
Final scenario Categorical Dispersion; Explosion; Flash fire; Jet fire; Near miss; Safe release; etc.
Secondary
consequences

Categorical Ejected debris; H2 tank destruction; Pipeline rupture; Secondary fires;
etc.

Domino effect Categorical Yes; No.
Primary item Categorical Airship; Battery; Boiler; Check valve; Compressor; Cylinder; Elec-

trolyzer; Flange; Heat exchanger; Pipeline; Safety valve; Tank; etc.

Prim. item dimensions Numerical Volume: 42 m3, Diameter: 610 mm, Width: 6.3 mm; etc.
Prim. item material Categorical Austenitic steel; Brass; Carbon steel; Copper; C-0.5Mo steel; etc.
Prim. item pressure Numerical 25 bar; 75 bar; 200 bar; 241 bar; 500 bar; etc.
Secondary item Categorical Same as the primary item.
Sec. item dimensions Numerical Same as the primary item dimensions.
Sec. item material Categorical Same as the primary item material.
Sec. item pressure Numerical Same as the primary item pressure.
Substance released Categorical H2; H2/NH3 mixture; H2/N2 mixture; H2/O2 mixture; Syngas; etc.
Other substances Categorical Same as the substance released.
Storage medium Categorical Gas; Liquid.

Storage quantity Numerical 0.5 m3; 6 m3; 70.4 m3; 510 m3; 20,000 m3; etc.
Location type Categorical Open space; Semi-confined; Confined.
Actual pressure Numerical Same as primary item pressure.
Actual temperature Numerical 443 K; 533 K; 653 K; 714 K; 770 K; etc.
Operational status Categorical Assembly operation; Inspection; Loading; Maintenance; Normal oper-

ation; Shutdown; Start-up; Testing operation; Unloading.
Release type Categorical Gas; Liquid; Mixed.
Release quantity Numerical Same as the storage quantity.
Active barriers Categorical Alarm; H2 detector; Flare; Safety valve; Sensor; Sprinkler system; etc.
Passive barriers Categorical Containment basin; Reactor steel skirt; Rupture disk.
Procedural barriers Categorical Firefighters intervention; Emergency plan; Emergency shutdown; Evac-

uation; Feed blocked; Fire extinction; Road closed; Ventilation; etc.
Fatalities Numerical 1; 3; 6; 19; 30; 62; etc.
Injured persons Numerical Same as the fatalities.
Evacuees Numerical Same as the fatalities.
Environmental damage Categorical Yes; No.
Economic loss Numerical 0.1 M USD; 0.1 M USD; 0.1 M USD; 0.1 M USD; 0.1 M USD; etc.
Hole diameter Numerical 1 mm; 2 mm; 10 mm; 25 mm; 48 mm; etc.
Hole shape Categorical Circular; Crack; Gap.
Post-event notes Textual The company involved has implemented revised procedures [...] to

ensure that it can only be inserted in the correct orientation.


