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Due to the accumulated greenhouse gas (GHG) effect, climate change will affect infrastructure networks 
regardless of different climate mitigation strategies. Our current investigation reveals an apparent increasing trend 
in the number of climatic-based failures in the Swedish railway infrastructure from 2010 until 2020. 
Switch and crossing (S&C) is a critical part of the railway infrastructure network, which plays a key role in 
adjusting the railway network capacity and dependability performance. Due to the structure of S&C, it can be 
affected more by extreme climate change impacts, e.g., abnormal temperature, ice and snow, and flooding. 
Clearly, the reliability and hazard function of infrastructures will be affected by age and environmental conditions. 
Therefore, it is essential to analyze the effect of different climate change features / explanatory variables called 
“covariates” on the reliability of S&Cs. The proportional hazard model (PHM) is a practical approach to assess 
and prioritize the impact of various environmental covariates on S&Cs’ reliability.  
This paper aims to integrate climate change data with infrastructure asset health. This integration can be developed 
by utilizing proportional hazard methodology to assess the effect of different covariates on the reliability function. 
The proposed methodology has been verified through a number of S&Cs located on the Swedish railway network. 
As a main result, this study has revealed that the operational environment covariates significantly influence the 
reliability of S&Cs and profoundly affect the availability and capacity of railway tracks. The study indicates the 
need for effective climate adaptation options to reduce climate change impacts and risks to achieve resilience and 
climate-neutral railway infrastructure asset. 
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1. Introduction 
The railway network can be described as a 
"system of systems" where various sub-systems 
work together to enable the transportation of 
people and goods as a whole. This demand is 
increasing globally and locally, while the 
industry faces economic and performance 
pressures that make it more challenging to 
maintain sustainability and availability. On the 
other hand, climate change consequences include 
heatwaves, flooding, rising sea levels, and severe 
snow falling and coldness, ultimately leading to 
reduced availability, safety, and punctuality and 
increased operation and maintenance costs 
(Thaduri et al. 2021, Garmabaki et al. 2021, 
Garmabaki et al. 2022).  
It is vital to consider different operational factors 
affecting the system's behavior (Gao, Barabady, 

and Markeset 2010, Barabadi, Barabady, and 
Markeset 2011). The study by (Thijssens and 
Verhagen 2020) evaluates the use of an extended 
Cox regression model in analyzing time-on-wing 
data of aircraft components, finding that it 
provides a more accurate prediction of time-to-
failure than traditional survival analysis 
methods. The model can also effectively account 
for the effects of various factors on the time-to-
failure of components, such as operating 
conditions, maintenance actions, and design 
characteristics. The study also suggests that 
aircraft components installed in hot desert 
climates have better reliability than those in 
humid climates.  
In another study, Barabadi, Barabady, and 
Markeset (2014) used the Proportional Hazards 
Model (PHM) to predict and optimize spare parts 
requirements. The PHM was used to model the 
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failure rate of spare parts based on covariates 
such as operating hours and usage history. The 
study provides a methodology for using 
reliability models with covariates in practice and 
shows results demonstrating their usefulness in 
predicting spare parts requirements.  
Liu et al. (2020) used proportional hazards 
models to develop a maintenance strategy that 
considers system components' aging and 
cumulative damage. Through simulations and 
case studies, the authors showed that this 
approach can effectively predict maintenance 
needs and improve system reliability. (Chen et 
al. 2020) used a Cox proportional hazard deep 
learning model for predictive maintenance. The 
model combines the Cox proportional hazard 
model with deep learning techniques called Cox 
proportional hazards deep learning (CoxPHDL) 
to improve the accuracy of maintenance 
predictions. The deep learning part is used to 
model the complex relationship between 
predictors and the failure times, while the Cox 
model part allows for handling data censoring. 
(Zheng et al. 2021) proposed a proportional 
hazard model incorporating degradation trends 
and environmental factors to predict product 
reliability. The authors conducted a case study 
using a real-world dataset and modelled 
degradation using the Wiener process. The 
research suggests that considering degradation 
trends and environmental factors can improve 
the accuracy of reliability predictions and 
provide helpful information for product 
reliability management.  
This paper aims to integrate meteorological 
factors like temperature, precipitation, snow 
speed, and humidity with railway infrastructure 
asset health. This approach will be used to 
analyze the effect of these parameters on hazard 
rate/reliability and assess the impact of various 
scenarios on the failures of railway assets. The 
rest of this paper is organized as follows: in 
Section 2, the Cox model and paper’s 
methodology are described, and in section 3 case 
study and related data are presented. Results will 
be discussed in section 4, and finally, conclusion 
and more study will be presented. 

2. Methodology of the study 
2.1. Methodology 

Figure 1 shows the process proposed in this 
paper, including 4 phases. 

2.1.1.Phase 0, data gathering 
Switches and crossings (S&C) with the highest 
failure frequency at different railway stations 
were selected as use cases. Data from various 
sources, including the Swedish Meteorological 
and Hydrology Institute (SMHI) and the 
Trafikverket failure database (Ofelia) and the 
asset registry database (BIS), were collected in 
phase zero. The nearest weather stations to the 
railway stations were identified, and 
meteorological parameters were extracted. The 
combination of SMHI and TRV (Trafikverket/ 
Swedish Transport Administration), VViS 
(Swedish Transport Administration's weather 
information) databases allowed for precisely 
determining failure time and meteorological 
parameters. The failures were categorized into 
climatic and non-climatic failures, with climatic 
failures being those caused by weather or 
meteorological factors. 

2.1.2.Phase 1, failure trend assessment 
During this stage, the failure times that have 
been extracted are evaluated to determine the 
Independent and Identically Distributed (IID) 
using statistical or graphical methods. This test 
helps determine the behavior of the baseline 
hazard, which will be discussed in the Cox 
model section. 

2.1.3.Phase 2, Cox model development 
Cox (1972) developed the proportional hazard 
model (PHM); the Cox PH model is usually 
written in terms of the hazard model formula 
shown in Equation (1). This model expresses the 
hazard at time  for an individual with a given 
specification of a set of explanatory variables 
denoted by . The  represents a collection 
(sometimes called a “vector”) of predictor 
variables being modeled to predict an 
individual’s hazard. The Cox model formula 
says that the hazard at time t is the product of 
two quantities. The first of these , is called 
the baseline hazard function. The second 
quantity is the exponential expression  to the 
linear sum of , where the sum is over the  
explanatory  variables (Kleinbaum and Klein 
1996). 
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Figure 1. A holistic framework for Cox PH model implementation 
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  (1) 

 

A hazard ratio (HR) is the hazard for one 
individual divided by the hazard for a different 
individual. The two individuals being compared 
can be distinguished by their values for the set of 
predictors, ’s. The HR can be written as the 
estimate of  divided by the estimate of 

 where  denotes the set of 
predictors for one individual, and  for 
the other individual. The  is independent of  
and the result equals a constant value (See 
Equation 2). This equation is a mathematical 
expression that states the PH assumption. There 
are two options when the PH assumption is not 
satisfied: a stratified Cox model (SCM) or an 
extended Cox model (ECM).  

  (2) 

2.1.4.Phase 3, Estimation 
Based on previous phases, the impact of various 
covariates on the hazard function and reliability 
function needs to be assessed. Furthermore, 
sensitivity analysis can be performed to evaluate 
the potential impact of different climate change 
scenarios on railway infrastructure asset health. 
By examining different climate change scenarios 
for the future, it is possible to gain insight into 
how asset health may be impacted in the long 
term. This information can be valuable for 
decision-makers in developing effective 
maintenance strategies for infrastructure assets 
ensuring the safe and reliable operation of the 
railway system. 

3. Case study 
Switches and crossings (S&Cs), also known as 
turnouts or points, are critical components of 
railway engineering that enable trains to change 
tracks. They are made up of two main parts, the 
switch, and the crossing, which work together to 
guide trains from one track to another. The 
selection and usage of S&Cs depend on the 
railway system's design and operational 
requirements. They are commonly used in 
complex areas of the railway network, such as 
junctions, terminals, and marshaling yards, 

where multiple trains must be directed to 
different tracks. After pre-processing of TRV 
datasets and merging them with meteorological 
data, as illustrated in Figure 2, the dataset 
required for Cox model analyses is prepared.  
Table 1 presents the specifications of the five 
selected assets and failures and meteorological 
data were collected for a duration of 18 years, 
ranging from 2001 to 2018 for them. 

4. Result and discussion 
Trend analysis is a statistical method commonly 
utilized in investigating changes in the operation 
of a repairable unit over time. The pattern of 
failures can either be monotonic or non-
monotonic. In the case of a monotonic trend, the 
system has a concave or convex shape. Non-
monotonic trends occur when trends change with 
time or repeat themselves in cycles. Several 
trend tests are widely used in reliability studies, 
including the Laplace trend test, Military 
Handbook test, and Anderson-Darling test, 
which are described in various sources such as 
(Garmabaki et al. 2016, Ascher and Feingold 
1984, Viertävä and Vaurio 2009). 

Table 1.Assets’ ID and their locations 

Object 
ID 

Region Latitude Longitude 

200020 Gothenburg 57.71038 11.98253 
200026 Gothenburg 57.71051 11.98274 
3860099 Luleå 65.58089 22.16984 
2960022 Kiruna 67.86347 20.20417 
20021 Borlänge 60.47647 15.41973 

In the considered statistical analysis, the null 
hypothesis in trend tests asserts the absence of 
any significant pattern or trend in the data under 
analysis. Based on the statistical analysis, the 
results confirm that the null hypothesis is 
rejected for all tests. The results of the graphical 
trend analysis are shown in Figure 3, indicating 
the presence of a trend in the data for both 
individual assets and the group of assets as a 
whole (integrated scenbario). In addition, Figure 
3 a and b show the estimated and actual values 
of the number of faults over operation time. 
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Figure 2. Analyzing the data and deriving different failure modes 

 

Cox model development needs to be developed 
at this stage. For this purpose, hourly 
explanatory variables (covariates) including 
temperature, humidity, precipitation, and wind 
speed have been selected. It should be 
considered that selected covariates have a 
gradual effect, not instantly; therefore, for 
covering the meteorological effects, the average 
hourly value of covariates during the 24 hours 
prior to the failures are considered as input in the 
Cox PH model.  
STATA 15 software is used to assess Andersen-
Gill model parameters.  t. The coefficients of the 
covariates , and HR are shown in Table 2. 
The null hypothesis in the AG model is that the 
covariate has no significant effect on the hazard 
ratio. Therefore, the P-values reject the null 
hypothesis for the whole of the covariates in as 
shown in Table 2. 

 
(a) 

 
(b) 

Figure 3. Trend behaviour of the assets with the 
deteriorating trend, (a) each S&C analyzed separately, 
(b) whole assets analyzed as one group (integrated 
scenario) 
 
The resulting coefficients of the covariates , 
and hazard ratios are presented in Table 2. The 
null hypothesis assumes that the covariates have 
no significant effect on the hazard ratio. 
Therefore, the P-values obtained from the model 
reject the null hypothesis for all covariates, 
except humidity (See Table 2) which results in 
omitting the humidity parameter and rerunning 
the model again.  

Table 2. Results of the Cox PH model 

Covariate Coef. 
 

HR Robust 
Std. Err. 

P-value 

Temperature (T) -0.05 0.95 0.0075 0.00 
Humidity (H) 0.02 1.02 0.0151 0.16 
Precipitation (P) 1.49 4.44 0.3424 0.00 
Wind speed (W) -0.09 0.91 0.0455 0.05 
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After dropping the Humidity parameter and 
rerunning the model the details of model 
parameters can be found as per Table 3,  

Table 3. Results of the Cox PH model after dropping 
Humidity parameter 

Covariate Coef. 
 

HR Robust 
Std. Err. 

P-value 

Temperature (T) -0.05 0.95 0.0075 0.00 
Precipitation (P) 1. 49  6.96 0.3424 0.00 
Wind speed (W) -0.09 0.91 0.0455 0.03 

Schoenfeld results for test of proportional-hazards 
assumption is used, the null hypothesis for this 
test states that there is no time dependency for the 
parameter, and it is clear in Table 4. 

Table 4. Schoenfeld results for test of proportional 
hazards assumption 

 Covariate P-value 
Temperature (T) 0.85 
Precipitation (P) 0.74 
Wind speed (W) 0.23 

Hazard rate formula are shown in Equation (3)  

  (3) 

 
The way to interpret this output is by looking at 
the values. A value of coefficient less than 1 
says that an increase in one unit, will decrease 
the probability of experiencing an event 
throughout the observation period. By inverting 
(that is 1/ ), the "protective effect" will be 
found. For temperature parameter (T), 

=0.95 and 1/0.95=1.05; the interpretation 
will be that having the one-unit increase means 
that the asset will be experienced 1.05 less the 
probability of experiencing an event. The same 
interpretation can be presented for the Wind 
speed (W) parameter,  = 0.91 
and 1/0.91=1.10, which means one unit increase 
in wind speed value decreases the probability of 
experiencing failure 1.10 times. For , 
the interpretation is easier; for precipitation (P), 
the  =6.96, which means that 
one unit increase in precipitation value results in 
about seven times more possibility of 
experiencing the desired failure.  
In Figure 4, the reliability/survival probability is 
shown, and as it can be concluded, the system 

after operating for 10,000 hours, approximately 
42 percent is expected to still be functioning or 
in a reliable state, while the remaining 58 percent 
may have experienced failures or become 
unreliable. 

 
Figure 4. Probability of survival analysis graph (at the 
mean value of the covariates)  
 
In Figure 5, the cumulative hazard for different 
values of precipitation are shown, it is clear that 
increasing this parameter significantly can affect 
the failure rate, as an consequence of climate 
change the severity of precipitation will be 
increase and the failures behaviour will tend 
towards the redline, which leads to more failures 
frequency.  

 
Figure 5. Cumulative hazard rate for different 
precipitation values 

5. Conclusion 
In this study, we investigated the impact of 
climate change on the reliability of railway 
infrastructure by considering the effects of 
temperature, humidity, wind speed, and 
precipitation as covariates. After conducting a 
thorough analysis using Stata software, we found 
that humidity did not have a significant effect on 
the hazard rate function. However, we found that 
precipitation had a significant effect on the 
hazard function. The result reveal that the impact 
of climate change and the changing values of 
precipitation can greatly impact the failure 
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behavior of railway assets. The findings of this 
study demonstrate the significant impact of 
climate change on railway infrastructure 
reliability, particularly in relation to changes in 
precipitation patterns. The results highlighted the 
importance of considering climate adaptation 
measures in the design and maintenance of 
railway systems, to ensure their continued safe 
and efficient operation in the face of different 
climate changing scenarios. It is recommended 
that future research in this area includes a 
broader range of covariates to gain a more 
comprehensive understanding of the relationship 
between climate change not only railway 
infrastructure reliability, but also other 
infrastructure behave differently but approach 
can be generic. 
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