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The discipline of forward planetary protection aims to minimize microbial contamination on spacecraft in order to 
prevent the inadvertent contamination of other planetary bodies. Understanding the number of microorganisms, or 
bioburden, launched with the spacecraft is fundamental to achieving this outcome and is calculated using estimates 
of the bioburden density (bioburden per unit area or volume) across the spacecraft. 
While extremely simple, the deterministic estimators based on NASA-specified and implied bioburden densities 
may, under certain conditions, have quadratic risk lower than data-driven estimators, with no data estimators being 
uniformly better (i.e., the estimators are admissible). By comparing risks of deterministic and data-driven estimators, 
different sampling schedules and volumes can be analyzed to optimize the performance of these estimators. This 
paper contrasts two approaches used for bioburden calculations—frequentist and Bayesian—and evaluates their 
performance using data collected from NASA’s InSight mission. Specifically, we calculate quadratic risks of 
different types of shrinkage estimators and compare the risks with the Bayesian approach. An analysis for different 
regions of the parameter space found estimators with the lowest risks for bioburden values most frequently occurring 
in practice. 
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1. Introduction 

The primary objective of forward planetary 
protection is to minimize the inadvertent 
microbial contamination of other planetary bodies 
via hitchhiking microbes on robotic spacecraft 
sent to these planetary bodies. Planetary 
Protection (PP) engineers thereby constantly 
monitor, assess, and mitigate the microbiome of 
spacecraft surfaces and cleanroom assembly 
environments to ensure the responsible 
exploration of the solar system. NASA’s InSight 
mission, a lander delivered to the Martian surface 
in 2018 and retired by NASA in December 2022, 
explored the interior structure and processes of 
Mars. This mission had an at-launch bioburden 
requirement for the entire spacecraft of 1.50 × 105 
spores while the cruise stage had a requirement of 
5 × 105 spores. The landed spacecraft bioburden 
had to remain <3 × 105 spores while maintaining 

a bioburden density of <300 spores/m2. This 
paper contrasts two approaches to the bioburden 
density estimation: frequentist and Bayesian, by 
comparing their corresponding risks. The merits 
of the risks for evaluating the uncertainty of 
different estimators are analyzed and compared.  

2. Data Collection and Processing 

Although previous work has used a suite of 
molecular techniques to thoroughly characterize 
and profile the microbiome of various cleanroom 
environments and spacecraft, the gold standard 
remains the physical enumeration of microbes via 
culturing samples from spacecraft and associated 
surfaces. These samples go through laboratory 
processing and result in colony forming unit (CFU) 
counts that are ultimately represented as bioburden 
density estimates (CFU/m2). These estimates were 
tracked in a PP equipment list, and rollup 
calculations generated current best estimates 
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(CBE) of bioburden at higher-level nodes (i.e., 
subsystem and system) to certify compliance. Data 
samples were collected using either cotton Puritan 
(Guilford, ME) 806C swabs or Texwipe 
(Kernersville, NC) TX3211 polyester wipes. 
Swabs sampled a 0.0025 m2 surface area maximum 
while wipes sampled up to a 1.0 m2 surface area. 
Due to this experimental procedure, the swabs 
assume a pour fraction of 0.8 and the wipes 0.25, 
representing the portion of the total sample solution 
plated and analyzed for CFU counts. Also, in this 
paper, we assume that the sampling efficiency, i.e., 
the ability of sampling devices to remove spores 
from the surface and recover them in culture, is 
100%. However, due to technical, budgetary, and 
programmatic constraints, only a manageable 
portion of the entire spacecraft surface is directly 
sampled. To generate the bioburden CBE for 
components not directly verifiable, we applied a 
NASA-defined bioburden estimate based on the 
components’ manufacturing or assembly 
environment (Hendrickson et al., 2020). This 
approach utilizes a prespecified bioburden density 
estimation that applies a maximum value across the 
total surface area of the specified component. For 
hardware components that underwent similar 
assembly processes, an implied bioburden is 
adopted for all components, based on a direct 
verification of a representative component within 
the same lot. Once all components have a CBE, the 
bioburden estimates are generated. In this paper, 
we consider statistical risks estimates for all three 
types of components: sampled, specified, and 
implied. 

3. Gamma-Poisson Model 

In this paper, we use the Gamma-Poisson 
compound distribution model to estimate 
bioburden density and risks associated with the 
estimate (Gribok et al., 2022). The Gamma-
Poisson model assumes a Poisson distribution as 
a data generating model and a Gamma 
distribution as a prior distribution for parameter 
of the Poisson distribution. The Gamma and 
Poisson distributions are a conjugate pair, 
allowing for analytical calculations for Bayesian 
inference. On the other hand, the Gamma 
distribution is flexible enough to model a variety 
of prior assumptions about the Poisson 
parameter’s distribution. For the ith component, 
the model can be represented schematically as: 

 

(1) 

 

for i=1…N where N is the number of components, 
Xi is the random variable describing CFU counts, 
x is the actual number of CFUs found on the total 
exposure area Ei calculated as the area covered 
with a swab or wipe multiplied by the 
corresponding pour fraction, and is the 
bioburden density or expected number of CFUs 
per unit of exposure, which is unknown and the 
subject of the statistical inference. The unknown 

are drawn from the Gamma distribution 
with shape parameter α and rate parameter β. The 
mean and variance of the Gamma distribution 
under this parametrization can be expressed as  

and , respectively. The Gamma distribution 

parameters can either be set to reflect the 
noninformative nature of the prior information 
about  or be inferred from previously 
collected data to implement an empirical Bayes 
estimation. 

If the observed CFU count on the ith component is 
xi for a given exposure Ei, λi can be estimated as: 

,    (2) 

where N is the number of components. This 
estimate is the maximum likelihood estimate 
(MLE) (Atwood et al., 2003) currently used by 
NASA to evaluate the bioburden density and total 
CFU counts for biologically sensitive missions 
(Beaudet, 2013). The MLE allows the bioburden 
density for each sample to be examined 
separately, and it has a number of desirable 
statistical properties. For example, MLE is 
unbiased in a frequentist sense. However, it also 
has a number of shortcomings, such as large 
variance, and most importantly, for a small 
number of observed CFUs, it can overfit the data. 
For example, if the number of CFUs registered on 
an exposure surface is zero, MLE will produce a 
bioburden density estimate of zero, which is 
highly unlikely, as achieving absolute cleanliness 
is practically impossible, considering the 
presence of humans during spacecraft assembly. 
These shortcomings motivated the search for 
other estimators to calculate bioburden density, 
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such as Bayesian estimators. Bayesian inference 
using the Gamma-Poisson model will produce an 
estimator through (Martz et al., 1991): 

,   (3) 

which is the mean of the posterior Gamma 
distribution. While a biased estimator in a 
frequentist’s sense, the Bayes estimator has a 
number of advantages, such as not producing zero 
bioburden estimates for components with zero 
CFU counts and also often having a lower error 
with respect to the true bioburden density values. 
The lower error is achieved by balancing an 
estimator bias against its variance.  

Due to budgetary and time constraints, on 
average, only 10% of the spacecraft is sampled. 
The rest of the spacecraft’s components are either 
specified or implied. Since no data are collected 
from such components, the specified values are 
used as-is, and are examples of no-data or 
deterministic estimators. Additionally, for 
hardware components that underwent similar 
assembly processes, an implied bioburden is 
adopted for all components, based on the direct 
verification of a representative component within 
the same lot. Such components are called implied 
components and their bioburden density is also 
estimated with a no-data estimate, which is 
applied from other components. In this paper, we 
analyze risks associated with data-driven and no-
data estimators to evaluate the uncertainty 
associated with these estimators and for sampling 
design. 

4. Estimator Loss Functions and Risks 

In statistics, there are two approaches to 
determining the uncertainty associated with an 
estimator: frequentist and Bayesian (Martz et al., 
1991). Both approaches start the analysis of 
estimators’ performance by defining a loss 
function; for example, the measure of deviation of 
the estimate from the true value of the estimand 
(i.e., the parameter of interest, in our case, the 
bioburden density). The most commonly used 
loss function is the squared error loss (SEL) 
function, which in its general form can be written 
as: 

, (4) 

where k is a positive integer and  is an estimator. 
For k=0, Eq. (4) is reduced to the familiar least 
squares error function, L0. We use L0 as our loss 
function due to its analytical tractability and the 
fact that it is the currently assumed function for 
performing bioburden density estimation, which 
makes the estimators in this paper directly 
comparable with currently utilized statistical 
approaches. 

Having defined the loss function, the next step is 
to select estimators that will be used to obtain 
estimates of bioburden density. For this paper, 
three estimators are an obvious choice: 
deterministic estimators as the ones used for 
implied and specified components; MLE, Eq. (2), 
as the estimator currently used by NASA; and the 
Bayes estimator, Eq. (3), as a competing estimator 
with MLE. Since the loss function in Eq. (4) is a 
random variable, it cannot be used directly to 
evaluate estimator performance. In order to derive 
efficient comparison criteria, the loss function is 
averaged either over the assumed data distribution 
(frequentist) or over assumed λtrue distribution 
(Bayesian). Unfortunately, these two approaches 
are incompatible as they are making 
fundamentally different assumptions. The 
frequentist approach postulates that the 
randomness in the loss function in Eq. (4) 
originates exclusively from the data, and hence, 
the estimator  is the only source of randomness 
as it is a function of the data. The unknown 
parameter λtrue is assumed to be a fixed constant. 
In contrast, the Bayesian approach considers the 
collected data to be fixed, with λtrue is a random 
variable and averaging is performed over its 
distribution. The averaged loss is called risk in 
both paradigms; however, to make a distinction, 
the loss averaged over the data is called 
frequentist risk and the risk averaged over the 
posterior distribution of the parameter is called 
posterior expected loss (PEL) or posterior risk 
(Berger, 1995). 

Formally, the two risks for the Gamma-Poisson 
model can be expressed as: 

,  (5) 
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where R is the frequentist risk. An important 
feature of the frequentist risk is its dependence on 
the unknown parameter , which makes it a 
function and not a single number. This fact may 
complicate a comparison and ranking of different 
estimators as it is more difficult to compare two 
functions than two numbers. One of the 
frequentist approaches to deal with this situation 
is the minimax technique. Using the minimax 
approach, for the whole range of the parameter, 
the estimator with lowest worst-case risk is 
selected (minimum of the maximum risk). The 
estimator’s risk needs to be calculated for the 
whole range of the parameter since different 
estimators may have lower risks for different 

 ranges (Berger, 1995). Moreover, for a 
given estimator, the minimax value could in the 
parameter range irrelevant for the problem in 
hand.  

The Bayesian approach to quantifying estimator 
risk is to average over the posterior distribution of 

 while regarding the collected data xi as 
fixed. This leads to the following formula for the 
PEL for the Gamma-Poisson model: 

. (6) 

The PEL is a function of the parameters of the 
posterior distribution of , collected data, and 
estimator. Notice the Gamma distribution 
dependence on collected data xi, which makes it a 

posterior distribution. In contrast to the 
frequentist risk, however, all these values are 
known quantities. While the PEL is a function of 
collected data xi, its value is known and 
considered fixed. The uncertainty in PEL comes 
entirely from the posterior distribution of . 
On the other hand, the uncertainty in frequentist 
risk comes entirely from the data. 

While the two risks are not compatible and 
produce different results for the same estimator, 
they can be reconciled if the frequentist risk R is 
integrated over a prior distribution of  or 
PEL is integrated or summed over all possible 
realizations of the data, X. In this case, the 
resulting risk is called r-integrated risk and can be 
written as: 

.  (7), 

where  is negative binomial 

distribution. The r-integrated risk is no longer 
dependent on  or on data X. It represents a 
single number that can be used to rank 
estimators or design sampling strategies. For the 
Gamma-Poisson model and L0 loss function, the 
three risks for three different estimators 
considered in this paper are shown in Table 1. 
The first estimator in Table 1 is d-estimator, the 
deterministic, no-data estimator used for 

Table 1. Risks for three different estimators. 

Estimator R-Frequentist Risk ρ-Posterior Expected Loss r- Integrated Risk 

d (deterministic)  
  

  (MLE)    

 (Bayes) 
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specified and implied components; the second 
estimator is MLE currently used by NASA for 
bioburden density estimation; and the third one is 
the Bayes estimator produced by the Gamma-
Poisson model. Since the deterministic estimator 
does not depend on data, its frequentist risk 
associated with the L0 cost function is just a 
squared difference between the estimator value 
and true bioburden density value, which is the 
squared frequentist bias. Due to its indifference to 
the data, the deterministic estimator has no 
frequentist variance. Furthermore, its PEL and 
integrated risk are the same, as the estimator does 
not depend on data. The PEL and integrated risk 
is a sum of two terms: the variance of prior 
distribution Gamma (α, ) and the squared 
Bayesian bias. The Bayesian bias is different from 
traditional frequentist bias as it measures the 
difference between an estimator and the prior’s 
mean. If the deterministic estimator happens to 
coincide exactly with the prior mean, both PEL 
and integrated risks are just the variance of the 
prior distribution. 

The MLE in the second row of Table 1 is a data-
driven estimator, and its frequentist risk is a 
function of λtrue as well as exposure E. The 
frequentist risk is directly proportional to λtrue and 
inversely proportional to exposure. Larger λtrue 

values as well as data with a small exposure will 
produce estimates with larger uncertainty. The 
largest uncertainty will be for large λtrue and small 
exposure values. The risk also coincides with the 
variance of the MLE estimator, and it is obvious 
that the MLE estimator is unbiased in the 
frequentist sense. The posterior expected MLE 
loss is similar to the deterministic estimator; 
however, since the MLE uses collected data, the 
loss is decomposed into the variance of the 
posterior distribution and square of the Bayesian 
bias. The Bayesian bias in this case is the 
difference between the MLE estimate and 
posterior mean. In contrast to the frequentist risk, 
the PEL does not depend on λtrue but on collected 
data x, which is a known value. The PEL should 
however be considered as a function of the 
random variable X and hence it is a random 
variable. The integrated risk is not a random 
variable, as both random variables have been 
integrated out. The MLE’s integrated risk is a 

function of prior mean value and exposure. The 
deterministic and Bayes estimators are shrinkage 
estimators as they reduce the MLE variance. 

The last row in Table 1 is the Gamma-Poisson 
Bayesian estimator. For an SEL cost function, its 
frequentist risk can be decomposed into variance 
and squared bias. The variance is represented by 
the first term, and the squared bias is represented 
by the second term. The trade-off between the two 
is regulated with parameter B, which is between 
zero and one and is a function of prior parameter 
β and exposure E. For large exposures, the 
parameter is converging to zero and the Bayesian 
estimator is converging to MLE, reflecting the 
fact that, for a large amount of collected data, the 
data will outweigh any prior information. Also, if 
B differs from one, the Bayes estimator variance 
is guaranteed to be lower than the MLE variance. 
On the other hand, a very small exposure will set 
B nearly to one and the frequentist risk will be 
dominated by the bias term. Notice that, if the 
mean of the prior  is equal to λtrue, the Bayes 

estimator is unbiased in a frequentist sense. 
Parameter β controls the prior distribution 
variance, and for its large values, parameter B is 
set to one, meaning that in this case the estimator 
relies entirely on prior information. On the 
contrary, for a small β, parameter B is near zero 
and the estimator relies on data because the prior 
variance is large, and consequently, the prior 
information is vague. The PEL of Bayes estimator 
is just the posterior distribution variance. Finally, 
the integrated risk for the Bayes estimator 
depends on the prior distribution and exposure. 
For zero exposure, the risk becomes the variance 
of the prior distribution as no data are collected. 

5. Risks Behavior of Estimators  

The deterministic or no-data estimators are 
estimators that do not use data from the estimated 
component but rather rely either on NASA-
specified values or the bioburden density 
estimated using the data collected from similar 
components. For specified components, the only 
information provided is the bioburden density 
value for that component. For the InSight mission, 
the NASA-specified values range from 10 to 
10000 CFUs/m2. For implied components, the 
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bioburden information is provided by adopting 
posterior distributions from similar sampled 
components. Figure 1 shows frequentist risks for 
the deterministic estimator and its comparison 
with frequentist risks of the MLE and Bayes 
estimator. The frequentist risk of the deterministic 
estimator does not depend on a component’s 
exposure or the data. The frequentist risks for the 
MLE and Bayes estimator, on the other hand, 
depend on exposure. In Fig. 1, the assumed 
exposure is 0.002 m2, corresponding to swab 
exposure, and for the Bayes estimator, the prior is 
assumed to be constrained noninformative (CNI) 
(Atwood, 2003), which constrains the mean value 
of the prior distribution but is otherwise vague. 
For large mean values, this prior is converging to 
Jeffreys noninformative prior (Jeffreys, 1946). 
The risks are plotted as a function of the 
difference between the estimator and λtrue values. 
Parameter B for the Bayes estimator is set to 0.5. 

 

Fig. 1. Frequentist risks of three estimators. 

The frequentists risks cannot be calculated in 
practice due to their dependency on λtrue; 
however, its comparative analysis is still 
meaningful and insightful. For example, Fig. 1 
shows that, for a single component, the 
deterministic estimator has a smaller risk than 
MLE as long as the difference between λtrue and 
the estimator is smaller than 500 CFU’s/m2. It 
also has a smaller risk than the Bayes estimator 
for differences under 250 CFU/m2. Also, notice 
that the Bayes estimator has a smaller risk than 
MLE up to 750 CFU/m2. While in practice the 
differences are not available, if the deterministic 
estimator is accompanied by a measure of 
uncertainty, it can be decided whether it is worth 
using any data-driven estimators instead of the 
deterministic estimator. For example, if 
deterministic estimator has value of 400 CFU/m2 

50 CFU/m2, it will outperform MLE in terms of 
frequentist risk but will be dominated by the 

Bayes estimator as the Bayes estimator has a 
smaller frequentist risk starting with 250 CFU/m2. 
The PEL for the three estimators is shown in 
Column 3 of Table 1. Since only a single 
bioburden density value is provided for specified 
components, its PEL can only be estimated under 
certain assumptions. The first assumption is that 
the provided bioburden value is the mean value of 
the Gamma distribution with some parameters α 
and β. The second assumption is that, in the 
absence of any other information, it is reasonable 
to place CNI on the bioburden density of a 
specified component. The CNI can be 
parametrized as Gamma (0.5, 1/(2 μ)), where μ is 
the specified component’s bioburden value. 
Since, by assumption, the specified estimator is 
the mean value of the CNI distribution, its PEL is 
the CNI’s variance because the bias term is zero. 
When reporting risk values, it is convenient to 
report the risk’s square root as, in this case, the 
risk’s units are the same as the units of bioburden 
density. For example, for specified components 
with bioburden values of 10, 300, and 1000 
CFU/m2, the corresponding square roots of PEL 
and integrated risk will be 14.2, 424.3, and 1414.2 
CFU/m2 calculated as standard deviations of the 
corresponding CNI distributions. The PEL for 
MLE and Bayes estimators can be calculated for 
the situation when zero CFUs are collected from 
the component. Assuming CNI with a mean value 
fixed at 300 CFU/m2, the corresponding posterior 
risks for MLE and Bayes estimators are 236.2 and 
192.8 CFU/m2. Notice that the deterministic 
estimator risk for the same prior is 424.3 CFU/m2. 
In general, the posterior expected losses for the 
three estimators can be ranked as follow: 

   (8) 

Summarizing, the deterministic estimator may 
have the smallest risks of the three estimators 
provided its value is close to the true value of the 
parameter. This is achieved by the virtue of zero 
variance of the deterministic estimator. If its bias 
is small, the frequentist risk of the deterministic 
estimator will be small. In case, when the 
deterministic estimator is exactly equal to the 
value of the true parameter its frequentist risk is 
unassailable as it is guaranteed to be at least as 
good as any other estimator.  
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6. Integrated Risk and Sampling Size 
Determination 

The integrated risk is sometimes called the pre-
posterior risk since it can be considered as risk 
prior to any data collection. The integrated risk 
does not depend on λtrue or collected data. As can 
be seen from Table 1, for the deterministic 
estimator only depends on parameters of the prior 
distribution and, for data-driven estimators, it also 
depends on exposure. It is this dependence on 
exposure that makes it possible to use this risk for 
sampling size determination (SSD). Since 
sampling incurs a cost, which quantifies a 
financial risk, the total risk of determining the 
bioburden density of a component using the 
Bayes estimator can be represented as: 

 (9) 

where the first term is the integrated risk of Bayes 
estimator, C0 the initial cost of sampling setup, 
and C the recurring cost per subsequent sample. 
As can be seen from Eq. (9), the sampling cost is 
represented as a linear function of exposure. For 
swabs used for the InSight mission, the cost was 
$9.11 for the first swab and $1.45 for each 
additional swab. The optimal exposure can be 
found by differentiating Eq. (9) with respect to  
and equating the derivative to zero: 

 . (10) 

Equation 10 can be used, for example, to make a 
decision about the benefits of sampling implied 
components.  Table 2 shows SSD results for five 
implied components. The first two columns are 
component numbers: the number of the implied 
component and its implicant.

Table 2. SSD for implied components using integrated risk. 

Implied 
Component 

# 

Implied from 
Component # 
(implicant) 

Implied 
Bioburden 
Density, , 

CFU/m2 

Implied 
Risk, 

CFUs/m2 

Total Surface 
Area of the 

Implied 
Component, m2 

Optimal 
Sampling 
Area, m2 

Optimal 
Risk, 

CFUs/m2 

Optimal 
Cost, $ 

2 10 12.05 17.03 0.256 0.162 7.68 126.80 

106 108 13.51 19.11 0.533 0.178 7.91 138.78 

133 131 5.10 4.16 0.013 0 4.16 0 

36 38 15.50 4.38 2.0 0 4.38 0 

71 70 2.47 2.02 7.0 0 2.02 0 

29 32 104.16 65.88 0.166 0.166 23.41 129.46 

Since all implicant statistical characteristics are 
transferred to the implied component, its 
bioburden density and risk is identical to the 
implicant. The risk in this case is the PEL of the 
implicant. The PEL for the implicant is always 
available since all implicants are sampled 
components. For the results in Table 2, the PEL 
was calculated using sampled data and Jeffreys 
noninformative prior (Jeffreys,1946). The 
implicant PEL is shown in Column 4 of Table 2. 
The goal of SSD for implied components is to 
determine whether their additional sampling can 
be justified in terms of risk reduction and cost. 

The optimal sampling area obtained according to 
Eq. (10) is shown in Column 6, while the optimal 
risk and cost are in Columns 7 and 8, respectively. 
For Implied Components 2 and 106, the optimal 
sampling area is much smaller than the total 
surface area of the components and a significant 
risk reduction can be achieved with optimal 
sampling. For Implied Components 133, 36, and 
71, no additional sampling is required as they all 
have low implied bioburden densities and small 
risks implied from their corresponding 
implicants. On the other hand, Implied 
Component 29 has a high value of implied 
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bioburden density and implied risk, so according 
to Eq. (10), its entire surface needs to be sampled 
to reduce risk significantly. 

7. Conclusions 

We analyzed the different risks for three different 
estimators. All risk frameworks have their merits 
and limitations. The frequentist risk averages over 
the data distribution and is a function of the 
unknown parameter. Nevertheless, a relative 
comparison of different estimators is possible, 
and valuable insights about their corresponding 
regions of domination can be obtained. If the 
deterministic estimator is accompanied by an 
uncertainty estimate, the frequentist risk can be 
used to gain insights into the benefits of data-
driven estimators for specified or implied 
components. The posterior expected loss is only 
conditioned on known values and is most 
appropriate for sampled components as they have 
available collected data and assumed prior 
distribution of λtrue. For the Bayes estimator and 
squared error loss function, the risk is the 
posterior distribution variance, which is readily 
available as a result of Bayesian inference. This 
risk should also be used as an uncertainty estimate 
for implied components since implied 
components directly inherit all their values from 
corresponding sampled components. Finally, the 
integrated or pre-posterior risk is a very valuable 
tool for sampling size determination. Since the 
risk only depends on prior distribution and 
exposure parameters, it can be optimized to find a 
trade-off between the estimator’s uncertainty and 
cost. Future work will include a risk optimization 
for other types of cost functions to account for 
different emphases on bioburden density over- 
and underestimation and sampling efficiency.  
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