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Environmental contours and time dependence
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Environmental contours are widely used as a basis for e.g., ship design. Such contours are typically used in early
design when the strength and failure properties of the object under consideration are not known. An environmental
contour describes the tail properties of some relevant environmental variables, and is used as input to the design
process. A methodology for constructing environmental contours based on the Rosenblatt transformation has beed
used extensively. More recently alternative approach where environmental contours are constructed using Monte
Carlo simulation have been developed. Typically, the strength of a structural design is chosen so that the expected
return period of a failure event exceeds the desired lifetime of the structure. If time dependence in the environmental
variables is neglected, the expected return period is simply the inverse of the failure probability. In a more realistic
model, however, such dependence should be included. In this paper we describe a method for constructing an
environmental contour where time dependence is taken into account. The method is illustrated with a simple
numerical example.

Keywords: Structural reliability, Environmental contour, Structural design, Failure probability, Markov models,
Autoregressive models.

1. Introduction

Environmental contours are commonly used as
a basis for e.g., ship design, typically in the
early design phases when the strength and failure
properties of the object under consideration are
not fully known. Environmental contours describe
tail properties of the distribution of relevant en-
vironmental variables. Constructing environmen-
tal contours was considered by Winterstein et al.
(1993) and Haver and Winterstein (2009). Their
procedure starts out by constructing a contour
for two independent standard normally distributed
variables. This contour is then transformed to
a contour in the environmental space using the
inverse Rosenblatt transformation. Huseby et al.
(2013) noted that the probabilistic properties of
the contour is in general not preserved under
such transformations, and suggested an alternative
approach where environmental contours are con-
structed directly in the environmental space using
Monte Carlo simulation. Improved methods are
found in Huseby et al. (2015) and Huseby et al.
(2021). A survey of recent development in the
field can be found in Ross et al. (2019). For a
recent comparison between different methods, see
the benchmark study Haselsteiner et al. (2021). In

this paper we describe a method for constructing
an environmental contour where time dependence
is taken into account. For a recent related paper
see Mackay et al. (2021).

2. Basic concepts

Let X = (X1, X2) ∈ X ⊆ R2 be a vector of
environmental variables where e.g.,:

X1 = Wave period

X2 = Significant wave height

An environmental contour is defined as the bound-
ary of a set B ⊆ X , and denoted ∂B. The set
B is called an environmental contour set. During
the design phase of some structure of interest the
environmental contour can be used to identify
conditions which the structure should be able to
withstand. That is, if X ∈ B, the structure should
function normally. Thus, ∂B represents the most
severe or extreme conditions that the structure
should be able to handle.

The failure region F ⊆ X of a structure is the
set of states where the structure fails. See Figure 1.
Given an environmental contour set B the design
requirements are satisfied if and only if F does not
intersect with the interior of B. If the set B is large,
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the structure will be subject to strict requirements.
As a result, the probability of failure, i.e., the
probability that X ∈ F is small.

X1

X2

B

F

∂B

Sea state:
 X1 = Wave period
 X2 = Sign. wave height

Environmental contour

Fig. 1. An environmental contour and a failure region.

In the design phase the exact shape of the fail-
ure region F of a structure is typically unknown.
Instead it is assumed to belong to a family of sets
denoted by E . The exceedance probability of B
with respect to E is defined as:

Pe(B, E) = sup
F∈E

{P [X ∈ F ]}. (1)

The exceedance probability is an upper bound on
the failure probability of the structure assuming
that the true failure region is a member of the
family E . A failure region F ∈ E is maximal if
no region F ′ ∈ E exists such that F ⊂ F ′. The
family of maximal regions in E is denoted by E∗.
It is easy to see that:

Pe(B, E) = sup
F∈E∗

{P [X ∈ F ]}.

3. Convex environmental contours

For a given target exceedance probability pe ∈
(0, 0.5) a set B is said to be a valid environmental
contour set if Pe(B, E) ≤ pe. In order to simplify
the calculations of exceedance probabilities only
convex contours sets will be considered here. Fur-
thermore, we also assume that the failure regions
are convex. This implies that all sets in E∗ are half-
spaces. This is illustrated in Figure 2.

In order to find a convex contour B with the
desired exceedance probability, we follow Huseby

B ∂B

Environmental contour

Supporting 
hyperplane

Supporting 
half-space

X1

X2 Sea state:
 X1 = Wave period
 X2 = Sign. wave height

Fig. 2. Supporting hyperplane and half-space

et al. (2015) and let C(θ) be defined for all angles
θ ∈ [0, 2π) as:

C(θ) = inf{y : P [Y (θ) ≥ y] ≤ pe},

where Y (θ) = X1 cos(θ) +X2 sin(θ) denote the
projection of the random sea state vector X onto
the unit vector (cos(θ), sin(θ)). The function C is
referred to as the pe-level percentile function of
the joint distribution of X . For θ ∈ [0, 2π) we
also introduce the half-spaces:

F(θ) = {x : y(θ) ≥ C(θ)}, (2)

where y(θ) = x1 cos(θ) + x2 sin(θ) denote the
projection of the point x onto the unit vector
(cos(θ), sin(θ)). We then assume that we can find
a convex contour set B such that the family of
maximal failure regions is:

E∗ = {F(θ) : θ ∈ [0, 2π)}

Then it follows that:

Pe(B, E) = sup
F∈E∗

{P [X ∈ F ]}

= sup
θ∈[0,2π)

{P [X ∈ F(θ)]}

= sup
θ∈[0,2π)

{P [Y (θ) ≥ C(θ)]} = pe

Thus, B is a valid environmental contour set. In
fact B is the minimal set with this property. By
using Monte Carlo simulation the function C(θ)

can be estimated, and hence also the resulting
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environmental contour set B. Note that in this case
the environmental contour set is given by:

B =
⋂

θ∈[0,2π)

F̄(θ), (3)

where F̄(θ) = {x : y(θ) ≤ C(θ)} for all θ ∈
[0, 2π). See Huseby et al. (2015) and Huseby et al.
(2021) for further details.

4. Return periods and dependence

In many practical situations it is of interest to de-
termine the expected return period of a given fail-
ure event. Assuming a simple discrete time model
with no time dependence, the expected return pe-
riod is essentially the inverse of the exceedance
probability. Thus, for a given expected return pe-
riod, we can simply calculate the corresponding
exceedance probability, and then construct the re-
sulting environmental contour. The main objective
of this paper, however, is to study the connection
between the return period and the exceedance
probability in cases with time dependence. Thus,
we consider the state of the environment which is
observed at discrete points of time 0 = t0 < t1 <

t2 < · · · . We let Xi = (Xi1, Xi2) denote the
observation at time ti, i = 0, 1, 2, . . .. The discrete
time stochastic process {Xi} will be called the
environmental process. For each θ ∈ [0, 2π) we
also let:

Zi(θ) = I(Xi ∈ F(θ)), i = 0, 1, 2, . . . (4)

where I(·) denotes the indicator function. We as-
sume that {Zi(θ)}, at least approximately, can be
modeled as a Markov process with state space
S = {0, 1}, and transition probability matrix
P (θ) given by:

P (θ) =

[
p00(θ), p01(θ)

p10(θ), p11(θ)

]

We also introduce the stationary distribution of the
process, given by:

π0(θ) = P (Zi(θ) = 0),

π1(θ) = P (Zi(θ) = 1),

for i = 1, 2, . . .. The stationary distribution can
be found using standard methods for discrete time

discrete space Markov processes, by solving the
equations:

π(θ)P (θ) = π(θ), and π0(θ) + π1(θ) = 1,

where π(θ) = (π0(θ), π1(θ)). As a result we get:

π0(θ) =
p10(θ)

p10(θ) + p01(θ)
,

π1(θ) =
p01(θ)

p10(θ) + p01(θ)
.

At the same time we have:

P (Zi(θ) = 1) = P (Xi ∈ F(θ)) = pe

Combining this, we get that:

π1(θ) =
p01(θ)

p10(θ) + p01(θ)
= pe. (5)

Assuming that Z0(θ) = 0, we consider the point
of time where the process {Zi(θ)} first enter state
1, denoted:

N(θ) = min{n ≥ 1 : Zn(θ) = 1}. (6)

Note that due to the relation between the processes
{Zi(θ)} and {Xi}, Eq. (6) can also be expressed
as:

N(θ) = min{n ≥ 1 : Xn ∈ F(θ)}. (7)

The random variable N(θ) is referred to as the
return period of the failure event {Xn ∈ F(θ)}.
The expected return period, E[N(θ)] can easily be
determined by conditioning on Z1(θ) and using
that Z0(θ) = 0, implying that:

E[N(θ)] = p00(θ) · (1 + E[N(θ)]) + p01(θ) · 1
Solving this equation with respect to E[N(θ)], we
get that:

E[N(θ)] =
1

p01(θ)
(8)

By Eq. (5) we have that:

p01(θ) = pe(p10(θ) + p01(θ))

Inserting this into Eq. (8) we get:

E[N(θ)] =
1

pe(p01(θ) + p10(θ))
(9)
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In the special case where (p01(θ) + p10(θ)) = 1,
the expected return period simplifies to:

E[N(θ)] =
1

pe
, for all θ ∈ [0, 2π). (10)

Since the row sums in the transition probability
matrix P (θ) are one, (p01(θ) + p10(θ)) = 1 also
implies that:

p10(θ) = 1− p01(θ) = p00(θ)

p11(θ) = 1− p10(θ) = p01(θ)

Hence, the transition probability matrix becomes:

P (θ) =

[
p00(θ), p01(θ)

p00(θ), p01(θ)

]

Since the rows of P (θ) are equal, this corresponds
to a situation where Z0(θ), Z1(θ), Z2(θ), . . . are
independent of each other.

In many cases, however, it may be more real-
istic to assume that Z0(θ), Z1(θ), Z2(θ), . . . are
positively correlated, which corresponds to the
following inequalities:

p01(θ) < p11(θ), (11)

p10(θ) < p00(θ) (12)

The condition Eq. (11) means that the probability
that Xi+1 ∈ F(θ) given that Xi ∈ F(θ) is
greater than the probability that Xi+1 ∈ F(θ)

given that Xi /∈ F(θ). That is, a failure event is
more likely to happen if the process is already in
a failed state, than if it is not in such a state. The
condition Eq. (12) has a similar interpretation.

Using again that the row sums in the transition
probability matrix P (θ) are one, it is easy to see
that both Eq. (11) and Eq. (12) are equivalent to
the condition that p01(θ) + p10(θ) < 1. Thus, if
Z0(θ), Z1(θ), Z2(θ), . . . are positively correlated,
this implies that:

E[N(θ)] =
1

pe(p01(θ) + p10(θ))
>

1

pe

We now assume that instead of specifying a
fixed target exceedance probability pe, we spec-
ify a fixed target expected return period, denoted
μe. The goal is then to find an adjusted target
exceedance probability p̃e > pe such that:

1

p̃e(p01(θ) + p10(θ))
≥ μe for all θ ∈ [0, 2π)

In order to find p̃e we let:

θ∗ = argmax
θ∈[0,2π)

[p01(θ) + p10(θ)].

A sufficient condition for E[N(θ)] ≥ μe for all
θ ∈ [0, 2π) is then that:

E[N(θ∗)] =
1

p̃e(p01(θ∗) + p10(θ∗))
= μe

Hence, the target exceedance probability can be
adjusted to:

p̃e =
1

μe(p01(θ∗) + p10(θ∗))

Based on the adjusted target exceedance prob-
ability, we can calculate an adjusted percentile
function C̃(θ) satisfying:

P (Y (θ) ≥ C̃(θ)) = p̃e

and use this to determine an adjusted environmen-
tal contour set B̃ with an expected return period
which is closer to the target value μe.

Note that if the exceedance probability is in-
creased from pe to p̃e and this also affects the
transitions probabilities of the processes {Zi(θ)}.
In fact, this typically increases the correlations.
Thus, (p01(θ) + p10(θ)) becomes smaller for all
θ ∈ [0, 2π), and as a result the return periods may
still be a bit longer than the target value. Since
longer return periods are desirable compared to
shorter periods, this potential error is considered
to be conservative.

5. Modeling time dependence

In this section we describe a model for the en-
vironmental process {Xi} which includes time
dependence assuming that:

Xi = Ψ−1(W i), i = 0, 1, 2, . . . , (13)

where W i = (Wi1,Wi2) has a standard bivariate
normal distribution, i = 0, 1, 2, . . ., and Ψ−1

denotes the inverse of the well-known Rosenblatt
transformation, chosen so that Xi gets the desired
bivariate distribution i = 0, 1, 2, . . ..

In order to ensure that {Xi} (and hence, also
{Zi}) is a Markov process, we let {W i} be a
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bivariate stationary AR(1) process. That is, for
j = 1, 2 we let:

Wij = ρjWi−1,j + ρ̄jVij , i = 1, 2, . . . ,

where W 0,V 1,V 2, . . . is a sequence of indepen-
dent standard bivariate normally distributed vec-
tors, and ρ̄j =

√
1− ρ2j , j = 1, 2. We then have

for i = 1, 2, . . . and j = 1, 2:

E[Wi,j ] = ρj E[Wi−1,j ] + ρ̄j E[Vi,j ] = 0

Var(Wi,j) = ρ2j Var(Wi−1,j) + ρ̄2j Var(Vi,j)

= ρ2j + (1− ρ2j ) = 1

Cov(Wi,j ,Wi−1,j)

= Cov(ρjWi−1,j + ρ̄jVi,j ,Wi−1,j)

= ρj Cov(Wi−1,j ,Wi−1,j)

+ ρ̄j Cov(Vi,j ,Wi−1,j)

= ρj Var(Wi−1,j) + ρ̄j · 0 = ρj

Thus, it follows that W 0,W 1,W 2, . . . are stan-
dard bivariate normally distributed variables with
correlations ρ1 and ρ2 for component 1 and 2
respectively. Hence, {Xi} also gets the desired
marginal distribution.

6. Estimating the transition probability
matrices

We now assume that we are given a convex en-
vironmental contour set B, which is estimated
assuming no time dependence, and using a target
exceedance probability pe. We then choose θ ∈
[0, 2π), and consider the process {Zi(θ)} defined
relative to B by Eq. (4). That is, the failure region
F(θ) is a supporting half-space of the given set B.

The transition probability matrices P (θ) can
be estimated by running a Monte Carlo simula-
tion of the process {Xi}. This is easily done by
generating W 0,V 1,V 2, . . . ,V N as a sequence
of independent standard bivariate normally dis-
tributed vectors, and then use the transformations
described above. As a result we get a sequence:

X0,X1,X2, . . . ,XN

sampled from the environmental process.

To estimate the transition probability matrix
P (θ), we need to count the number of transitions
made by the process {Zi(θ)}. Thus, we let:

S00(θ) =

N∑
i=1

I(Zi−1(θ) = 0, Zi(θ) = 0)

S01(θ) =

N∑
i=1

I(Zi−1(θ) = 0, Zi(θ) = 1)

S10(θ) =

N∑
i=1

I(Zi−1(θ) = 1, Zi(θ) = 0)

S11(θ) =

N∑
i=1

I(Zi−1(θ) = 1, Zi(θ) = 1)

Thus, Sst(θ) is the number of transitions from
state s to state t made by the process {Zi(θ)}
during the simulation, s, t = 0, 1. We then obtain
the following unbiased estimates of the transition
probabilities:

p̂00(θ) =
S00(θ)

S00(θ) + S01(θ)

p̂01(θ) =
S01(θ)

S00(θ) + S01(θ)

p̂10(θ) =
S10(θ)

S10(θ) + S11(θ)

p̂11(θ) =
S11(θ)

S10(θ) + S11(θ)

The matrix P (θ) will be estimated for a suitable
set of values θ1, . . . , θk, evenly spread out in the
interval [0, 2π).

The above Monte Carlo method is very easy
to implement. Unfortunately, however, it does
not produce very precise results. The problem is
that since the exceedance probability pe is typi-
cally very small, most of the time the {Zi(θ)}-
processes will be in state 0. Thus, even if N is
large, the number of transitions to state 1 will
typically be relatively small. In order to improve
the results, we will use a technique similar to the
one used when estimating the percentile function
C(θ) as part of the estimation of the safe B.

In order to explain the idea, we let r > 0, and
define Or as the set of points within a circle with
radius r centered at the origin. That is:

Or = {w = (w1, w2) : w
2
1 + w2

2 ≤ r2}
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We then assume that the radius r is chosen so that:

Ψ−1(Or) = {x = Ψ−1(w) : w ∈ O} ⊆ B,
where as before Ψ−1 denotes the inverse Rosen-
blatt transformation. From this it follows that if
W i ∈ Or, then Xi = Ψ−1(W ) ∈ B. Moreover,
by Eq. (3) it follows that if W i ∈ Or, then for all
θ ∈ [0, 2π) we have:

Yi(θ) = Xi1 cos(θ) +Xi2 sin(θ) ≤ C(θ).

Finally, since Zi(θ) = I(Yi(θ) > C(θ)) it follows
that if W i ∈ Or, then for all θ ∈ [0, 2π) we have:

Zi(θ) = 0.

Thus, as long as the {W i}-process is within the
set Or, we do not need to know the exact value of
the process to determine the state of the {Zi(θ)}-
process.

In order to utilize this observation, we intro-
duce:

{j : W j /∈ Or} = {j1, j2, . . .}.
Thus, the process W j is outside of the set Or for
j = j1, j2, . . .. Whenever this happens, we com-
pute the corresponding value of X along with the
index j. Using this procedure we get the following
data:

Xi = Ψ−1(W ji), Ii = ji, i = 1, 2, . . . , N

This implies that all the cases where W j are in-
side the set Or are discarded. Still, since we store
the indices of the values of W j which are outside
the set Or in {Ii}, we keep track of the number
of discarded results and where in the sequence
they occur. In fact, given the results X1, . . . ,XN

and I1, . . . , IN , we can compute the number of
transitions of the {Zi(θ)}-processes, and thus,
estimate the transition probability matrices P (θ).
In order to explain this in more detail, we choose
θ ∈ [0, 2π), and consider transitions of the process
{Zi(θ)} between Xi−1 and Xi, noting that the
total number of transitions in this interval is given
by the index difference (Ii − Ii−1).

CASE 1. Yi−1(θ) ≤ C(θ) and Yi(θ) ≤ C(θ).
In this case the process {Zi(θ)} is in state 0 all the
time. Thus, all the (Ii− Ii−1) transitions are from
state 0 to state 0.

CASE 2. Yi−1(θ) ≤ C(θ) and Yi(θ) > C(θ).
In this case the process {Zi(θ)} is in state 0 all
the time except for the last point of time where
it enters state 1. Thus, the (Ii − Ii−1 − 1) first
transitions are from state 0 to state 0, while the
last transition is from state 0 to state 1.
CASE 3. Yi−1(θ) > C(θ) and Yi(θ) ≤ C(θ).
In this case the process {Zi(θ)} starts out in state
1 and then immediately enters state 0. Thus, the
first transition is from state 1 to state 0, while the
(Ii− Ii−1− 1) transitions are from state 0 to state
0.
CASE 4. Yi−1(θ) > C(θ) and Yi(θ) > C(θ).
In this case we need to distinguish between two
possibilities. If Ii−Ii−1 = 1, the process {Zi(θ)}
is in state 1. Thus, there is exactly 1 transition, and
this is from state 1 to state 1. On the other hand,
if Ii − Ii−1 > 1, then the first transition is from
state 1 to state 0, while the last transition is from
state 0 to state 1. The remaining (Ii − Ii−1 − 2)

transitions are from state 0 to state 0.

Using these four cases all transitions be-
tween X1 and X2, all transitions between X2

and X3, up to all transitions between XN−1

and XN , can be counted. Thus, the quantities
S00(θ), S01(θ), S10(θ), S11(θ) can be calculated,
and hence, the resulting transition probabilities
can be estimated using the unbiased estimators
p̂00(θ), p̂01(θ), p̂10(θ), p̂11(θ).

Using these transition probability estimates
we can also estimate the expected return period
E[N(θ)] as a function of the angle θ:

Ê[N(θ)] =
1

pe(p̂01(θ) + p̂10(θ))

Finally, the adjusted target exceedance proba-
bility, p̃e can be estimated by:

ˆ̃pe =
1

μe(p̂01(θ∗) + p̂10(θ∗))

where:

θ∗ = argmax
θ∈[0,2π)

[p̂01(θ) + p̂10(θ))]

Based on the estimated adjusted target exceedance
probability, ˆ̃pe, we can then estimate an adjusted
environmental contour set B̃ assuming no time
dependence.
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Note, that in order to generate N data points, we
need to generate a much higher number of W j-
values. However, the estimates become far more
precise. Moreover, the estimation is much faster
since the calculations are done based on just N
data points compared to the full set of data points.

7. A numerical example

We now illustrate the method presented in the
previous section by an example where we let pe =
2.74 · 10−4. Given a sample rate of 1 per day and
no time dependence, this corresponds to a target
expected return period of μe = 10 years. For the
AR(1) process we let ρ1 = ρ2 = 0.95.

The example represents total sea wave data
from West Shetland. A three-parameter Weibull
distribution is used for the significant wave height,
H , while a lognormal conditional distribution is
used for the wave period, T . The Weibull distri-
bution is parameterized by a location parameter,
γ, a scale parameter α, and a shape parameter β.
The lognormal distribution has two parameters,
the log-mean μ and the log-standard deviation σ.
The dependence between H and T is modeled by
letting the parameters μ and σ be expressed in
terms of H:

μ = E[ln(T )|H = h] = a1 + a2h
a3 ,

σ = SD[ln(T )|H = h] = b1 + b2e
b3h.

The distribution parameters, estimated using data
from West Shetland, are listed in Table 1 and
2. We start out by estimating an environmental
contour set B assuming no time dependence and
with target exceedance probability pe. We then
proceed by running a Monte Carlo simulation with
the specified time dependence, and estimate the
resulting transition probabilities. In Figure 3 we
have plotted the estimated expected return period,
E[N(θ)] as a function of the angle θ (in degrees).
Due to simulation uncertainty the curve appears to
be very unstable. However, the actual variation is
not very significant. The shortest expected return
period is estimated to be 21.7 years which is
more than twice the target value of 10 years. The
resulting adjusted target exceedance probability is
the p̃ = 5.94 · 10−4.

Table 1. Fitted parameter for the
three-parameter Weibull distribution

α β γ

2.259 1.285 0.701

Table 2. Fitted parameter for the condi-
tional log-normal distribution

i = 1 i = 2 i = 3

ai 1.069 0.898 0.243
bi 0.025 0.263 -0.148

Based on the adjusted target exceedance prob-
ability an adjusted environmental contour set B̃ is
estimated. Based on this set we then run another
Monte Carlo simulation with the specified time
dependence, and estimate the resulting transition
probabilities. In Figure 4 we have plotted the
resulting estimated expected return period for B̃.
The shortest expected return period is estimated
to be 10.4 years which is much closer to the target
value of 10 years.

In Figure 5 we have plotted both the original
contour (the outer curve) and the adjusted contour
(the inner curve). We see that due to the time
dependence the environmental contour set can be
reduced significantly.

In principle one could compute a new adjusted
target exceedance probability, and yet another ad-
justed environmental contour set and so on. By re-
peating this process, the resulting expected return
period should ideally converge towards the target
value. However, it turns out that the effect on the
environmental contour is very limited.

8. Conclusions

We have presented a method for adjusting envi-
ronmental contours when the environmental vari-
ables are subject to time dependence. The time de-
pendence is modeled by a simple two-dimensional
AR(1) process. The environmental contours are
constructed using a direct Monte Carlo simulation
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Fig. 3. Expected return periods as a function of θ

Fig. 4. Adjusted return period as a function of the
angle θ

Fig. 5. Original and adjusted contours

approach with importance sampling. The tran-
sition probabilities are estimated using rejection
sampling. This yields greatly improved precision

while still enabling efficient calculations. The nu-
merical example shows that time dependence can
have significant impact on return periods where
the adjusted environmental contour set becomes
a subset of the original set. Note that when using
an AR(1) process, the time correlation needs to
be quite large in order to obtain a realistic model.
In an upcoming study more advanced time series
models will be investigated, and we will also study
how to fit such model to real data.
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