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The maintenance strategy known as Condition-Based Maintenance (CBM) has become increasingly popular as it 

optimizes asset availability by minimizing maintenance downtimes and reducing overall maintenance costs. To do 

so, it analyses asset monitoring data to forecast the degradation and prevent failure before it occurs, a process called 

fault prognosis. This process generally comprises four basic steps: data acquisition, construction of a Health 

Indicator (HI), identification of the Health Stages (HS), and prediction of the Remaining Useful Life (RUL). 

Nevertheless, it is usually dependent on prior knowledge of a failure threshold, thus enabling the prediction of the 

RUL. In cases where this information is not available, a different prognosis approach is required. Therefore, rather 

than predicting the RUL, the proposed method intends to indicate the proximity of the failure occurrence based on 

the premise that during the development of the fault, breakpoints associated with the acceleration of the degradation 

rate occur. In this way, evaluating only the HI behavior, without considering previously monitored data, the 

proposed method could be applied to machines whose faults of interest had not yet been observed. To validate the 

method, it is applied to synthetically generated HI data with different behaviors over time. Results show that the 

method has the potential to be used in scenarios where there is no previous information on the degradation pattern. 
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1. Introduction 
Condition-Based Maintenance (CBM) is a 

maintenance strategy based on the real-time 

diagnosis of impending failures and the prognosis 

of future equipment health (Peng et al. 2010). 

Using predictive techniques, monitoring and 

follow-up of the condition parameters are carried 

out to identify the need for equipment 

maintenance (da Silva and de Souza 2022). 

Therefore, by employing this proactive strategy, 

organizations can enhance physical asset 

availability and reduce maintenance costs, which 

has led to a significant increase in the popularity 

of CBM in recent years. 

Fault detection, diagnosis, and prognosis are 

the key processes to implementing the CBM 

strategy. After detecting and diagnosing a failure 

mode, its degradation shall be tracked to predict 

how long the system can be operating before 

failure. Thus, fault prognosis allows for the 

prediction of failure occurrence and the 

components’ Remaining Useful Life (RUL), 

thereby enabling timely and cost-effective 

maintenance decisions (de Souza et al. 2021).  

The degradation trend of a given component 

can be divided into multiple stages, and each stage 
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has uncertain changes (Liu and Fan 2022) that can 

be evaluated with the support of machine learning 

and statistical modeling for prognosis. Changing 

from one degradation stage to another indicates 

closer proximity to a failure, as shown in Fig. 1. 

The ability to accurately identify these changes is 

essential for ensuring the reliability, safety, and 

optimal performance of engineering systems. 

 

 
Fig. 1. Conceptual representation of a Health Indicator 

and its stages. 
 

As seen in Fig. 1, the degradation trend of a 

given system can be observed by a Health 

Indicator (HI). Thus, HI represents the damage 

degree of said system computed by monitoring 

signals (Lei et al., 2018). 

The growing interest in fault prognosis 

methods has led to the development of various 

techniques, including data-driven, model-based, 

and hybrid approaches. These methods have been 

successfully applied to the aforementioned multi-

stage degradation patterns, as reported by several 

authors (Guan et al. 2022; Liu et al. 2022; Liu and 

Fan 2022; Suzuki and Ito 2022; Wang et al. 2021; 

Wen et al. 2017; Yan et al. 2021). 

Despite the promising advancements in fault 

prognosis methods, a major drawback of the 

approaches presented in the literature is their 

reliance on supervised learning techniques. 

Supervised methods require substantial amounts 

of labeled data, which can be challenging to 

obtain, particularly for complex engineering 

systems. The process of collecting and annotating 

such data is time-consuming, labor-intensive, and 

often expensive, as it requires expert knowledge 

to accurately label the degradation stages and 

fault conditions. Additionally, these methods 

cannot be applied in scenarios where the studied 

failure has not occurred or has not been properly 

monitored throughout its degradation phase. 

In this context, this paper proposes a method 

to identify changes in the degradation stages for 

an unsupervised faults prognosis. The proposed 

method is based on the following premises: 

 Prognosis is the capability to use available 

observations to predict upcoming states of 

machines or forecast the failure before it 

occurs (Tung and Yang, 2009). This implies 

that fault prognosis is not limited to 

estimating RUL 

 Degradation stage changes could be used to 

determine the approximation of a failure 

 The method only applies after the detection 

and diagnosis of a given failure mode 

 The system under study has no labelled 

monitoring data related to the failure mode 

 There is no knowledge regarding either 

failure thresholds or the system End-of-Life 

(EoL) 

 The health indicator shall have at least three 

stages (healthy, initial degradation, and 

critical degradation) 

 The focus of the method is the prevention and 

mitigation of the risk associated with a failure 

occurrence 

Accordingly, the proposed method identifies 

the approximation of the failure from a change in 

the degradation stage. To demonstrate the 

method, synthetic data from six distinct patterns 

of HIs has been utilized.  

These datasets have been implemented to 

illustrate how alterations within the degradation 

pattern may be identified. Such changes indicate 

that the equipment's degradation is accelerating, 

which implies that a failure is more likely to 

occur. The results demonstrate that, given certain 

conditions, the method exhibits robust and 

reliable performance, indicating the potential for 

its application in real engineering systems. 

The remainder of this article is structured as 

follows: Section 2 presents the proposed 

unsupervised method, followed by examples of its 

application in Section 3, where its strengths and 

limitations are highlighted and discussed. Finally, 

Section 4 presents the conclusions of this work. 

2. Proposed Method 
The method proposed in this work comprises four 

consecutive processes, as shown in Fig. 2. Some 

prior assumptions are considered, such as the pre-
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existence of an HI, which may be a Physical HI 

(PHI) or a Virtual HI (VHI) (Lei et al. 2018). 

Additionally, it is assumed that the fault has already 

been detected, and the HI can be observed from the 

moment of detection onward.  

Also, it should be noted that the proposed 

method applies only to cases where the degradation 

process of the failure mode considered has multiple 

Health Stages (HS), with the first being the healthy 

state, followed by at least one degradation state and 

one critical state (Lei et al. 2018). 

 

 

Fig. 2. Proposed method for unsupervised prognosis.

 

The first step of the proposed method is the 

HI smoothing process. The purpose of this step is 

to remove noise from the HI, highlighting its trend 

and resulting in a smoothed HI (HIs). Since 

smoothing methods tend to work as low-pass 

filters, thereby affecting high-frequency noise 

more than low-frequency noise, an additive 

decomposition method was chosen for this process. 

Accordingly, the smoothing process is based 

on ARIMA models, which are often represented as 

ARIMA (p, d, q), where p is the number of 

autoregressive components, q is the number of 

moving average components, and d is the number 

of times the original series is differentiated 

(Michalski et al. 2022). The values of p, d, and q 

are selected for each analysis conducted based on 

the Hyndman-Khandakar algorithm (Hyndman 

and Khandakar 2008).  

The Hyndman-Khandakar algorithm-based 

ARIMA method demonstrated greater suitability 

than other tested approaches such as cubic spline 

smoothing, Moving Average (MA), Cumulative 

Sum (CUSUM) control chart, and local polynomial 

regression fitting, specifically the Locally 

Estimated Scatterplot Smoothing (LOESS) and 

Locally Weighted Scatterplot Smoothing 

(LOWESS) methods, for HI smoothing for two 

primary reasons. Firstly, the applied smoothing 

method does not require any hyperparameter 

definition, rendering it entirely unsupervised and, 

secondly, the results obtained with this method 

maintain the necessary dispersion for statistical 

analysis while reducing the noise level to a more 

appropriate level. 

The second step of the method involves the 

differentiation of HIs, intending to create a 

stationary signal. The result of this process is the 

HIs, given by Eq. (1). 

 
s s s

HI HI HI 1t t t  (1) 

It is worth noting that both the smoothing and 

differentiation processes are performed in a single 

batch, i.e., all the observations available are 

considered in each analysis. Besides, as shown in 

Eq. (1), the time series of the HIs has one less 

observation compared to the HI and HIs series, i.e., 

for an HI with n observations, the correspondent 

HIs will have (n–1) observations. 

In the third step, the windowing process 

prepares the analysis and reference samples for 

statistical analysis. In this step, a size for the 

analysis window, w, must be defined, which is the 

only hyperparameter required by the method. For 

better comprehension, Fig. 3 illustrates how the 

windowing process works when analyzing an HI 

with a time series containing 9 observations (n = 9 

and an analysis window with 3 observations (w = 
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3). Each observation is represented by a numbered 

square. 

As depicted in Fig. 3, it is required that n w 

+ 2) for the first analysis to avoid complete overlap 

between the analysis and reference samples. 

During the windowing process, the analysis and 

reference samples have the same size, w, until the 

analysis of the (2w + 1) observation. From the 

subsequent observation, the reference sample starts 

to incrementally increase with each new 

observation considered. 

 

 

Fig. 3. Graphic representation of the windowing 

process for a HI with n = 9 and w = 3. 

 

Then, in the fourth step of the method, each 

pair of samples generated in the windowing 

process is subjected to statistical analysis to 

determine whether the sample means are 

statistically equivalent (null hypothesis) or not. 

Given that the variance between the two samples is 

assumed to be different and the number of 

observations in each sample varies during the 

application of the method, Welch's t-test (Welch. 

1947) was selected to perform this comparison. 

As long as the p-value obtained from the test 

remains above the established limit value (based on 

a selected confidence level), the null hypothesis is 

accepted. In this case, the analysis sample is shifted 

forward, allowing for continuous monitoring of the 

system's behavior. However, if the p-value is 

consistently below its threshold in subsequent 

analyses, degradation is no longer in the same HS. 

This is considered to determine the EoL of the 

system in terms of reliability and risk in an 

unsupervised fault prognosis. 

3. Method Application Examples 
To demonstrate the application of the proposed 

method and discuss its strengths and limitations, six 

synthetically generated HIs with different pattern 

behavior over time are considered. In these 

application examples, The HIs are not related to any 

specific system and are represented as time series of 

dimensionless values that are generated from 

mathematical functions. 

Two fundamental degradation patterns were 

considered to construct the HI for each case: linear 

and exponential. Hence, for four out of the six 

cases, the HI is built by combining these two 

patterns. In the remaining two cases, only one of 

the two patterns is taken into consideration, 

resulting in the absence of a defined breakpoint. 

Fig. 4 schematically presents the combined 

patterns considered, where ,  and  are the 

degradation rates of each HS. Furthermore, in all 

cases, an error  was considered, with ~ N(0, 2), 

added to the HI for each observation. The HI 

parameters considered in each case are shown in 

Table 1. The difference between cases 1 and 3 and 

between cases 2 and 4 is only the noise level 

considered, expressed by its variance 2. 

.

 

 
Fig. 4. Schematic representation of the combined degradation patterns considered. 
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Table 1. HI parameters for each case. 

Case Degradation pattern ² Breakpoint Time 

1 linear + linear 0.0155 0.0425  3.50 500 

2 linear + exponential 0.0045  0.0065 3.50 500 

3 linear + linear 0.0155 0.0425  0.10 500 

4 linear + exponential 0.0045  0.0065 0.10 500 

5 linear 0.0285   1.25  

6 exponential   0.0034 1.25  

 

To ensure consistency in comparing the 

results obtained with different cases, the initial HI 

value was set at approximately 50, reaching a 

value of approximately 80 after 1,000 

observations in all cases. Fig. 5 presents the 

simulated HI values for each case over time 

 

 

Fig. 5. Simulated HI values for each case over time. 

 

Once the HI is obtained the first step consists 

of smoothing the HI from the construction of an 

ARIMA model for the considered data. Fig. 6 

presents the results for the six cases considered.  

 

 
Fig. 6. Smoothed HI (HIs) for each case over time. 

 

A unique ARIMA model is derived for each 

case studied since the model is chosen for each 

analysis performed. Note that the influence of the 

HI noise level on the smoothing process is 

evident, despite the generation of a tailored model 

for each case. 

The next step is to perform the 

differentiation process, obtaining in this way the 

HIs for each case, as presented in Fig. 7. 
 

 

Fig. 7. HIs for each case over time. 

 

The following steps include the statistical 

analysis of the HIs obtained through the 

presented windowing process, and subsequently, 

the evaluation of the p-value obtained from 

Welch’s test. This test assesses the average of the 

two samples (reference sample and analysis 

sample) for each observation.  

Fig. 8 presents the p-values obtained from 

Welch’s test over time for each case, using an 

analysis window of 100 observations and a 

confidence level of 95%. The black dashed line 

represents the established threshold indicating 

that the null hypothesis of the mean values of the 

analysis and reference samples being statistically 

different is rejected.  

The results show that the best outcomes 

were achieved in cases 3 and 4, in which the p-
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value presents two distinct patterns: the p-value 

remains close to the maximum value before the 

HI breakpoint and then decreases shortly after the 

defined breakpoint. The value then remains 

constant below the pre-established threshold 

(0.05, in this study), indicating that the mean 

value of the analysis sample differs statistically 

from that of the reference sample.  

 

 

Fig. 8. Welch’s test p-values over time for each case 

considering an analysis window of 100 observations. 

 

In case 1, the p-value is not consistently 

below the threshold after the breakpoint time, 

unlike case 3. Conversely, case 2 exhibits a 

slower transition between the maximum and 

minimum p-values compared to case 4, although 

the p-value stabilizes below the defined threshold 

after several observations. The disparity in the 

response between cases 1 and 3, and cases 2 and 

4, can be solely attributed to the higher level of 

noise added to the HI in cases 1 and 2. 

Finally, cases 5 and 6 display different result 

patterns compared to the other cases. Case 5 

shows a single pattern of linear degradation and 

does not exhibit the anticipated two distinct 

patterns. On the other hand, case 6 demonstrates 

a constant downward trend between the 

maximum and minimum p-values. This indicates 

that the mean values of subsequent analysis 

samples and their corresponding reference 

samples gradually increase in distance. This 

increase is associated with the degradation pattern 

following a single exponential curve in this case. 

Apart from examining the impact of 

degradation patterns and HI noise levels, two 

additional factors that could influence the results 

of the method are worth exploring: the size of the 

analysis window (the only hyperparameter of the 

method), and the distance between the breakpoint 

and the last analyzed observation. 

Regarding the former, Figs. 9 and 10 exhibit 

the obtained outcomes for an analysis window of 

50 and 200 observations, respectively. It is 

important to note that using smaller windows 

enhances the method's sensitivity to the influence 

of noise on HI, while larger windows have the 

opposite effect of reducing this sensitivity. 

 

 
Fig. 9. Welch’s test p-values over time for each case 

considering an analysis window of 50 observations. 

 

 

Fig. 10. Welch’s test p-values over time for each case 

considering an analysis window of 200 observations. 
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Concerning the distance between the 

breakpoint and the last observation analyzed, the 

results obtained by considering only the first 500, 

550, and 600 observations are presented in Fig. 

11, Fig. 12, and Fig. 13, respectively. These 

results were obtained using an analysis window 

consisting of 100 observations. 

 

 

Fig. 11. Welch’s test p-values over time for each case 

considering the first 500 observations and an analysis 

window of 100 observations. 

 

 

Fig. 12. Welch’s test p-values over time for each case 

considering the first 550 observations and an analysis 

window of 100 observations. 

 

 
Fig. 13. Welch’s test p-values over time for each case 

considering the first 600 observations and an analysis 

window of 100 observations. 

 

The graphs demonstrate how the inclusion 

of observations obtained after the breakpoint 

affects the p-value outcomes. Notably, in cases 1, 

3, and 4, this effect is particularly significant. In 

cases 1 and 4, with 100 observations after the 

breakpoint, it would already be feasible to 

determine a change in the system's degradation 

pattern. For case 3, in turn, a change could be 

detected with just 50 observations after the 

breakpoint. 

Furthermore, since the smoothing process is 

executed in a single block, considering all 

available observations, it is anticipated that the p-

value response will fluctuate depending on the 

number of observations considered. This 

underscores the importance of consistently 

monitoring the degradation process of the system 

and applying the method accordingly. 

4. Conclusions 

The objective of this work is to present and 

explore a method capable of performing 

unsupervised fault prognosis for engineering 

systems by detecting changes in the degradation 

pattern, i.e., changes in HS after fault detection. 

Accordingly, its application is recommended 

especially in cases where the failure history has 

not yet been established and the available 

knowledge about the failure threshold is limited. 

From six different cases, it was possible to 

demonstrate that, overall, the proposed method 
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presents encouraging results. In certain scenarios, 

the method proves to be effective in detecting a 

change in the degradation pattern within a few 

observations after the breakpoint. For example, 

conditions where the degradation trend is linear 

and the HI has low noise levels are more favorable 

for accurately identifying the breakpoint. In these 

instances, it may even be possible to establish an 

EoL threshold based on the p-value, which is 

associated with an increased risk of imminent 

failure. 

Further studies of the method are still 

necessary, including verification under different 

scenarios beyond those considered in this work 

and a better evaluation of its limitations. 

Nevertheless, while there is still much work to be 

done, this study demonstrates the potential of an 

adaptive prognostic method as a supporting 

process for CBM and encourages its practical 

application in real-world scenarios soon. 
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