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We pose the maintenance planning for systems using probabilistic Remaining Useful Life (RUL) prognostics as
a renewal reward process. Data-driven probabilistic RUL prognostics are obtained using a Convolutional Neural
Network with Monte Carlo dropout. The maintenance planning model is illustrated for aircraft turbofan engines.
The results show that in the initial monitoring phase, the accuracy and sharpness of the RUL prognostics is relatively
small. The maintenance of the engines is therefore scheduled far in the future. As the usage of the engine increases,
the accuracy of the prognostics improves, while the sharpness remains relatively small. As soon as the estimated
probability of the RUL is skewed towards 0, the maintenance planning model consistently indicates it is optimal
to replace the engines immediately, i.e., “now”. This shows that probabilistic RUL prognostics support an effective
maintenance planning of the engines, despite being imperfect with respect to accuracy and sharpness.
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1. Introduction

The increasing use of sensors to monitor the health

of systems has generated large volumes of data.

This has incentivized the development of data-

driven Remaining Useful Life (RUL) prognostics

for these systems in the last years. Ultimately,

these prognostics are expected to support the

maintenance planning Shi et al. (2020).

Since the degradation of technical systems is

stochastic, it is of interest to quantify the uncer-

tainty associated with the RUL prognostics Fink

et al. (2020). This is particularly important for

maintenance planning. In this line, several studies

determine probabilistic RUL prognostics, and in-

tegrate these prognostics in the maintenance plan-

ning. In Nguyen and Medjaher (2019), the prob-

ability that an aircraft engine fails in predefined

time-windows is estimated using a neural net-

work. Using these probabilities, the optimal mo-

ment to order a new spare part and to replace the

engine are determined. In Lee and Mitici (2023),

the probability density function (PDF) of the RUL

of aircraft engines is predicted using a Convolu-

tional Neural Network (CNN) with Monte Carlo

dropout. These probabilistic RUL prognostics are

further integrated in a deep reinforcement learning

framework for maintenance planning. In de Pater

and Mitici (2021), the PDF of the RUL of aircraft

cooling units is estimated using particle filtering.

Using a linear program together with these prog-
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nostics, the maintenance of the units is planned.

Last, in Consilvio et al. (2020), the probability

of failure of a railway track is estimated using a

physics-based model. The maintenance of the rail-

way tracks is then planned using a linear program

that minimizes the risk.

Despite the current methodological advance-

ments for (probabilistic) RUL prognostics, prog-

nostics are still imperfect: The estimated PDF of

the RUL is not necessarily centered around the

true RUL (low accuracy), the variance of the es-

timated PDF may be large (low sharpness), and

the mass of the estimated PDF of the RUL may be

concentrated such that the true RUL is underesti-

mated/overestimated. Moreover, current machine

learning algorithms that estimate the RUL often

consider as loss function only metrics related to

the accuracy, such as the Mean Square Error

(MSE), without explicitly considering the sharp-

ness of the prognostics, or a combination of the

accuracy and the sharpness. However, we expect

that both the accuracy and sharpness of the RUL

prognostics influence the maintenance planning.

In this paper, we thus investigate the influence of

the accuracy and sharpness of the RUL prognos-

tics on the maintenance planning. Specifically, we

analyze the ability to plan maintenance and avoid

failures with imperfect RUL prognostics.

We develop probabilistic RUL prognostics us-

ing Convolutional Neural Networks (CNN) with

Monte Carlo dropout for the aircraft engines in

the C-MAPSS dataset Saxena and Goebel (2008).

As expected, these RUL prognostics are imper-

fect. Next, we determine an optimal maintenance

moment for these engines using renewal-reward

processes. In the initial usage phase, the accu-

racy of the prognostics is relatively small. The

prognostics become more accurate as the engine

degrades over time, and more measurements are

collected. Also, the sharpness of the prognostics

remains relative small until the engines are close

to failure. However, although the prognostics are

neither very accurate nor very sharp in the be-

ginning of the engines’ lifetime, we replace all

engines before their failure. For the considered

dataset, the optimal replacement time is now for

all engines when the actual RUL of the engines

is ten cycles or less. At this moment the mass of

the estimated PDF of the RULs is concentrated

around 0. In general, the optimal replacement mo-

ment is now for all engines when the estimated

probability P (RUL = 0) ≥ 0.004.

2. Data-driven predictive maintenance
scheduling

2.1. Maintenance scheduling using
Renewal Reward Processes

We consider a component (aircraft engine) whose

health is continuously monitored. At a generic

time step k during the life of the component, we

are interested in determining the optimal time k+

t∗k to replace this component. The component is in

a brand-new state after replacement, i.e., perfect

maintenance.

At time step k, using the measurements

recorded up to time step k and a CNN with Monte

Carlo dropout (see Section 2.2), we estimate the

probability that the RUL of the component is i

time steps, i ≥ 0. Let φk(i) denote the probability

that the component, after being used for k steps,

has a RUL of exactly i time steps. To determine

an optimal time to replace the component, we

consider the expected cost per unit of time:

[Expected cost over the current life cycle]

[Expected current life cycle]

Formally, at time step k, we are interested in

finding t∗k such that:

t∗k := argmintk>0
E[C(k, tk)]

E[L(k, tk)]
, (1)

with C(k, tk) the cost of replacing the component

at time k + tk, given that this component has

already been used for k time steps, and L(k, tk)

the lifetime of the component, given that this com-

ponent is replaced either upon failure, or preven-

tively after being used for k + tk steps.

If the component is scheduled for replacement

at time k+ tk from now, and this component does

not fail from now (time step k) until k + tk, then

the component is replaced preventively at time k+

tk at a cost cr. If, however, the component fails

at some time j, k < j < k + tk, then a failure

cost cf is incurred (corrective replacement), and

the component is immediately replaced.
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With this, the expected cost over the current life

cycle of the component is:

E[C(k, tk)] = cf

tk−1∑
i=1

φk(i) + cr(1−
tk−1∑
i=0

φk(i)).

Also, the expected current life cycle is:

E[L(k, tk)] = k +

tk−1∑
i=1

iφk(i) + tk(1−
tk−1∑
i=0

φk(i)).

Eq. (1) is solved using a numerical grid search.

In the next section we estimate φk(i) after every

flight cycle k of the aircraft engines using sensor

measurements and a CNN.

2.2. Probabilistic RUL prognostics using
a CNN with Monte Carlo dropout

We obtain RUL prognostics for the aircraft en-

gines in the C-MAPSS data set (see Saxena and

Goebel (2008)). The C-MAPSS dataset consists

of four subsets (FD001, FD002, FD003, FD004),

each with a test and training set. Each subset has

different failure and flight conditions. For each

engine in each training set, one measurement of

the engine is available per flight cycle per sensor

until the failure of the engine. Using the recorded

sensor measurements up to flight cycle k, we

predict a probability density function (PDF) of

the RUL of the engines. These prognostics are

updated after each flight cycle k. For this, we train

a CNN with Monte Carlo dropout for each subset,

following Mitici et al. (2023).

The C-MAPSS dataset contains a total of 21

sensors, of which seven sensors produce constant

measurements. We therefore use the remaining

H = 14 sensors as input to the CNN. We nor-

malize the sensor measurements with min-max

normalization with respect to the operating con-

dition (see Mitici et al. (2023)). Specifically, after

each flight cycle k of each engine v, we consider

the data sample Xv
k as input to the CNN. This

data sample contains the sensor measurements of

engine v of the past N = 30 flights:

Xv
k = [xv

k−N , xv
k−N+1, . . . , x

v
k], (2)

xv
i = [m̂v

i1, m̂
v
i2, . . . , m̂

v
iH ], (3)

with m̂v
ij the normalized sensor measurement of

flight cycle i of engine v from sensor j.

Following hyper-parameter tuning using grid

search Mitici et al. (2023), we consider a CNN

where the first five convolutional layers each con-

tain a ten one-dimensional filters of size 1 × 10.

Then, all ten feature maps are combined in a single

feature map by a sixth convolutional layer with

only a single filter, of size 1 × 3. Last, we pre-

dict the RUL of the engine by inputting this final

feature map in two fully connected layers. The

first fully connected layers contains 100 nodes,

and the last fully connected layer contains one

node and outputs the RUL prediction. Throughout

the neural network, we apply the tanh activation

function, except for the last layer, where we apply

the ReLU activation function Mitici et al. (2023).

To obtain a PDF of the RUL, we apply Monte

Carlo Dropout Gal and Ghahramani (2016) as

follows. During the training phase, we apply a

dropout rate of 0.5 to each layer of the CNN,

except for the first layer. This is often done to pre-

vent overfitting. However, we apply Monte Carlo

dropout with a rate of 0.5 also in the testing phase,

when we predict the RUL belonging to a new data

sample. In general, the dropout rate can be further

optimized using hyper-parameter tuning. For each

new test sample, we perform M = 1000 forward

passes of this sample through the neural network.

Due to the dropout, different, randomly selected

neurons (50 percent per layer) are dropped during

each forward pass. Thus, a different RUL pre-

diction is obtained with each forward pass. The

PDF of the RUL is constructed by giving each

individual RUL prediction a probability of 1
M .

This procedure is illustrated in Figure 1.

(a) First pass (b) Second pass

Fig. 1.: Schematic example - Monte Carlo dropout

for a neural network with 3 fully connected layers,

during 2 passes of a sample through the network.
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3. Results - Probabilistic RUL
prognostics for aircraft engines

For the test subsets of C-MAPSS, the measure-

ments stop at some moment before failure, i.e.,

they are not run-to-failure instances. For our main-

tenance planning methodology, however, we need

to have the sensor measurements until the failure

time of the engine. Otherwise, we cannot evaluate

how the optimal maintenance moment changes

when an engines degrades over time. We thus

use the engines in the C-MAPSS training set for

maintenance planning. We randomly select 80%

of the engines of each training set Nguyen and

Medjaher (2019) to train the CNNs. Then, we use

the trained CNN with Monte Carlo dropout to

predict a PDF of the RUL after each flight cycle

for the remaining 20% of the engines. These pre-

dictions are subsequently used in the maintenance

planning.

We train the neural network using the Adam

optimizer Kingma and Ba (2014), with a training

validation split of 80%-20% and 250 epochs. The

initial learning rate is 0.001, and is divided by two

when there is no improvement in the validation

loss for ten epochs in a row Mitici et al. (2023).

Table 1.: RMSE, MAE, mean standard deviation

(STD) and CRPS of the PDFs of the RUL.

Subset RMSE MAE CRPS Mean STD

FD001 13.1 10.1 7.1 12.0

FD002 15.2 11.7 8.4 11.5

FD003 13.6 10.2 7.3 12.4

FD004 15.9 10.7 7.1 12.2

Table 1 shows the Root Mean Square Error

(RMSE) and the Mean Absolute Error (MAE),

calculated with the mean RUL prediction of each

engine and after each flight cycle. To also evaluate

the quality of the PDF of the RUL, we also show

the mean standard deviation of the PDF of the

RUL and the mean Continuously Ranked Proba-

bility Score (CRPS, de Pater and Mitici (2022)).

Let yij denote the actual RUL for an engine i

belonging to the jth flight cycle, and let Fŷij
(x)

denote the estimated, empirical CDF of the RUL

of a engine i and flight cycle j. The mean CRPS

is defined as follows:

CRPS =
1

N

N∑
i=1

1

Fi

Fi∑
j=1

CRPSij , (4)

CRPSij =

∫ ∞

−∞
(Fŷij

(x)− I{yij ≤ x})2dx,

with

I{yij ≤ x} =

{
1, yij ≤ x

0, yij > x.

with N the number of engines selected for main-

tenance planning, and Fi the number of flight

cycles for which we have a RUL prediction for an

engine i. Intuitively, the CRPS is a probabilistic

generalization of the absolute error, and analyzes

both the accuracy of the PDF (i.e., whether the

estimated RUL distribution is centered around the

actual RUL), and the sharpness of the PDF (i.e.,

if the variance is low). The CRPS is small when

the corresponding PDF of the RUL is accurate

and sharp. For example, when all M individual

RUL predictions are close to the actual RUL, the

accuracy and sharpness of the corresponding PDF

of the RUL is high, and the CRPS is thus low. The

lowest possible value of the CRPS equals zero,

which we only obtain for a perfect RUL prediction

without any uncertainty.

4. Results - Maintenance scheduling
using probabilistic RUL prognostics

We considered a preventive replacement cost of

cp = 10, and a corrective maintenance cost of

cf = 100 for a failed engine. Table 2 shows

the planning results for four engines selected for

maintenance, one from each subset of C-MAPSS.

Here, yk and ŷk denote the actual and predicted

RUL, respectively, after the engine has been used

for k cycles. The optimal maintenance moment is

close to the lower bound of the 99% confidence

interval of the RUL for all engines in Table 2. This

is because the extra lifetime gained by postponing

the moment of maintenance does not outweigh

the extra expected failure cost gained from this

postponement.

Table 2 shows that for engine 2 (FD001) and

engine 39 (FD003) the mean and median RUL

prediction are close to the actual RUL throughout
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Table 2.: Performance of probabilistic RUL prognostics and maintenance planning for engines 2

(FD001), 32 (FD002), 39 (FD003) and 240 (FD004). When yk − t∗k is negative, it is optimal (given

the predicted PDF of the RUL) to maintain the engine after the actual failure time.

RUL prediction Optimal

Usage metrics maintenance time

Usage Mean Mean 99% CI of STD

Actual time predicted prediction the predicted predicted

RUL yk k RUL ŷk error yk − ŷk RUL ŷk RUL ŷk CRPS t∗k k + t∗k yk − t∗k
Engine 2 - subset FD001 (True lifetime = 287 cycles)

100 187 99.3 0.7 [66, 128] 12.6 3.0 61 248 39

50 237 45.5 4.5 [14,75] 11.9 3.4 13 250 37

40 247 43.2 -3.2 [13,71] 11.7 3.1 9 256 31

30 257 24.9 5.1 [0,54] 11.8 3.6 0 257 30

20 267 25.1 -5.1 [0,55] 12.2 3.7 0 267 20

10 277 7.7 2.3 [0,36] 8.9 3.3 0 277 10

Engine 32 of subset FD002 (True lifetime = 281 flight cycles)

100 181 76.2 23.8 [45,107] 11.8 17.3 42 223 58

50 231 35.1 14.9 [6,62] 11.1 9.4 0 231 50

40 241 29.0 11.0 [2,56] 10.5 6.6 0 241 40

30 251 23.8 6.2 [0,52] 10.8 3.9 0 251 30

20 261 11.9 8.1 [0,42] 9.7 5.4 0 261 20

10 271 5.5 4.5 [0,30] 7.3 4.0 0 271 10

Engine 39 of subset FD003 9True lifetime = 288 flight cycles)

100 188 107.8 -7.8 [77,137] 12.1 4.7 74 262 26

50 238 49.1 0.9 [18,80] 12.0 2.8 18 256 32

40 248 36.9 3.1 [8,65] 11.7 3.0 7 255 33

30 258 20.1 -0.7 [0,62] 12.3 2.9 0 258 30

20 268 20.2 -0.2 [0,49] 11.7 2.8 0 268 20

10 278 3.3 6.7 [0,28] 6.5 6.1 0 278 10

Engine 240 of subset FD004 (True lifetime = 149 flight cycles)

100 49 117 -17.3 [87,151] 12.4 11.3 87 136 13

50 99 81.5 -31.5 [49,120] 14.0 23.7 46 145 4

40 109 85.2 -45.2 [51,117] 13.4 37.6 47 156 -7

30 119 56.3 -26.3 [25,88] 12.6 19.3 23 142 7

20 129 26.3 -6.3 [0,58] 12.1 4.0 0 129 20

10 139 8.9 1.1 [0,38] 8.9 2.7 0 139 10

their lifetime, i.e., the RUL prognostics are accu-

rate. The high accuracy is also reflected by the low

value of the CRPS. For both engines, however,

the PDF’s are wide (not sharp) with a standard

deviation (STD) of approximately 12 flight cycles

(see also the PDF’s in Figure 2). Because the RUL

prognostics of these 2 engines are accurate, but not

sharp, the optimal maintenance moment is quite

early relative to the failure time. From 30 flights

before failure onwards, the estimated probability

that the RUL is 0 is always at least 0.002. From

this moment on, it is consistently optimal to im-

mediately replace these 2 engines (now, t∗k = 0)

(see also Figure 3). To limit the wasted life for

these engines, it would be desirable that the RUL

prognostics are not only accurate, but also sharp.

For engine 32 (FD002), the RUL is underesti-

mated: the mean RUL prediction is only 76.2 cy-

cles while the actual RUL is 100.0 cycles. Because

the RUL is underestimated in the beginning of

the engine’s lifetime, we replace this engine much

earlier than its failure time. When the actual RUL

= 50 cycles, it is already optimal to immediately

(t∗k = 0) replace engine 32 (Figure 3). Here,

underestimating the RUL early on resulted in a

significant waste of the engine’ lifetime.
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(a) Engine 2, FD001.
Actual RUL = 100 flight cycles

(b) Engine 2, FD001.
Actual RUL = 50 flight cycles

(c) Engine 2, FD001.
Actual RUL = 10 flight cycles

(d) Engine 32, FD002.
Actual RUL = 100 flight cycles

(e) Engine 32, FD002.
Actual RUL = 50 flight cycles

(f) Engine 32, FD002.
Actual RUL = 10 flight cycles

(g) Engine 39, FD003.
Actual RUL = 100 flight cycles

(h) Engine 39, FD003.
Actual RUL = 50 flight cycles

(i) Engine 39, FD003.
Actual RUL = 10 flight cycles

(j) Engine 240, FD004.
Actual RUL = 100 flight cycles

(k) Engine 240, FD004.
Actual RUL = 50 flight cycles

(l) Engine 240, FD004.
Actual RUL = 10 flight cycles

Fig. 2.: Predicted PDF of the RUL of engine 2, 32, 38 and 240 of subset FD001, FD002, FD003 and

FD004 respectively, when the actual RUL is 100, 50 and 10 flight cycles.

For engine 240 (FD004), the RUL is overesti-

mated in the early phase. The mean predicted RUL

is 85.2 cycles when the actual RUL is 40 cycles.

At this moment, the optimal maintenance time is

47 cycles in the future, which is after the failure

time of engine 240. As the usage of the engine

increases, the estimated PDF of the RUL becomes

more accurate and skewed towards 0. As a result,

the planning model consistently recommends to

immediately (now, t∗k = 0) replace the engine.

In fact, from 20 cycles before failure onwards,

the estimated probability that the RUL is 0 is at
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(a) Engine 2, FD001 (b) Engine 32, FD002

(c) Engine 39, FD003 (d) Engine 240, FD004

Fig. 3.: Optimal maintenance planning: t∗k optimal number of cycles until replacement, given current

time k - engines 2 (FD001), 32 (FD002), 38 (FD003), 240 (FD004).

(a) cp = 10, cf = 100 (b) cp = 1, cf = 100 (c) cp = 50, cf = 100

Fig. 4.: Boxplot of t∗k for several values of the actual RUL, considering a sensitivity analysis of ratio

of the preventive and corrective replacement costs cp and cf - all 141 engines selected for maintenance

planning from the four subsets of C-MAPSS.

least 0.015. As a result, it is consistently optimal

to immediately replace the engine.

As soon as the actual RUL is 10 cycles or

less, the planning model consistently indicates

for all engines immediate replacement as optimal.

In these cases, the estimated probability that the

RUL=0 is at least 0.052. In general, as soon as

the estimated probability that the RUL=0 is at

least 0.004, the optimal action is to immediately

replace the engines. The accuracy of the prognos-

tics improves as the engines approach their failure

time. As a result, all engines are replaced before

failure. Thus, to prevent failures, it is especially

important to have accurate RUL prognostics in the

final phase of the engines’ lifetime.

4.1. Sensitivity analysis - Costs

In this section we analyze the impact of various

ratios of preventive and corrective replacement

costs. Figure 4 shows the optimal replacement
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time t∗k for all engines selected for maintenance

planning, for three different cost ratios: the orig-

inal costs cp = 10, cf = 100 (Figure 4a), the

costs cp = 1, cf = 100 (Figure 4b) and the costs

cp = 50, cf = 100 (Figure 4c). As expected, we

replace engines later when the preventive replace-

ment costs cp are larger (relative to the corrective

replacement costs cf ). However, even when the

ratio cf/cp = 100/50 = 2, i.e, when the cost

of corrective replacement is relatively small com-

pared with the cost of preventive replacement, all

engines are still replaced immediately (i.e., now,

t∗k = 0) as soon as there are 10 flights or less

before failure, i.e., in the final phase of the lifetime

of the engines, the proposed model consistently

indicated an immediate replacement.

5. Conclusion

We propose a stochastic renewal-reward process

for predictive maintenance planning. This mainte-

nance planning integrates data-driven probabilis-

tic RUL prognostics. Our framework is illustrated

for the aircraft engines from C-MAPSS. The prob-

abilistic RUL prognostics are obtained using a

Convolutional Neural Network with Monte Carlo

dropout. As expected, the RUL prognostics are

imperfect, i.e., the prognostics have a relatively

small sharpness and accuracy, especially in the

initial phase of the engines’ usage. As the en-

gines approach their failure time, the accuracy im-

proves, while the sharpness improves only slightly

in the last cycles of the life of the engines.

Despite these imperfect probabilistic RUL

prognostics, the maintenance planning model

schedules effectively engines for replacement. Ini-

tially, the engines are scheduled for replacement

far in the future. As soon as the mass of the

estimated PDF of the RUL is concentrated around

zero, the planning model consistently indicates

immediate engine replacement as an optimal ac-

tion. As a result, all considered engines are re-

placed before failure.

As future work, we aim to further tune the

dropout rate of the CNN used for prognostics and

its impact of the maintenance planning. We also

plan to further analyze the impact of the mainte-

nance cost ratio on the planning.
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