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This article proposes an approach to the identification and interpretation of homogeneous ageing classes for rein-
forced concrete bridge components. The approach is articulated into three phases: in the first phase, homogeneous
ageing classes are identified by considering the results of the visual inspections and the time sequence of condition
states of the bridge components, applying a cluster analysis based on the k-means algorithm; in the second phase,
the ageing class is predicted by means of a random forest algorithm, considering features of the bridge and of the
components; in the third stage, the prediction is explained by applying a SHAP analysis. The results reveal that the
prediction of the ageing class is influenced by the year of construction of the bridge and therefore of the component.
This result opens up to a multiplicity of interpretations, which are considered in the article. The dependence of the
ageing class on other variables is also discussed.
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1. Motivation of the research

In order to extend the useful life of existing struc-

tures such as reinforced concrete (r.c.) bridges, it

is necessary to accurately estimate their remain-

ing useful life and efficiently plan maintenance

interventions. To this end, a valuable source of

data are digital maintenance management systems

(MMSs), where the results of visual inspections

performed periodically on r.c. bridges are col-

lected. However, analysis of such digital databases

requires consideration of a number of issues that

typically characterize these datasets.

First of all, it should be considered that building

materials, construction techniques, environmental

actions, and traffic loads acting on r.c. bridges vary

over the decades. This makes it difficult to transfer

past experience to more recently built structures.

At the same time, results of visual inspections

have been collected for some decades in digi-

tal databases, so while the (short) life of recent

objects is well documented, information relating

only to the last part of the life of older objects is

available.

Secondly, more and more studies focus on pre-

dicting the remaining useful life while considering

the evolution of the condition and the characteris-

tics of the object, exploiting digital databases of

MMSs and data-based artificial intelligence (AI)

techniques. An example of such studies is Huang

(2010). However, models that rely on data often

have a black box character, and the results are

often difficult to understand and interpret. This

represents a limit to the use of these techniques by

infrastructure managers, for whom it is important

to comprehend the origin of the results.

The problem of the black box nature of data-

driven AI models and the difficult explanation of

their results are common to every field of their

application. For this reason, in recent years, re-
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search has focused on developing approaches that

support the application of these techniques, capa-

ble of making the results more understandable and

facilitating their interpretation and explanation.

Such approaches aimed at understanding and in-

terpreting the results of machine learning models

are referred to by the term Explainable AI (XAI)

(Confalonieri et al., 2021). However, being a re-

cent field of research, the implementation of XAI

in infrastructure and maintenance management is

still at the embryonic stage.

A more transparent approach that is already being

pursued in the case of roads is to identify road seg-

ments having similar characteristics (called ”ho-

mogeneous groups,” HGs) and similar condition

evolution. Cluster algorithms are also employed

for this purpose (Mathavan et al., 2015). Asset

managers identify the factors that determine the

evolution of deterioration for each segment and

develop a deterioration model for each HG.

Recent studies have shown that HGs can be iden-

tified for building materials with respect to their

mechanical properties as well as bridge compo-

nents with respect to their condition evolution, by

analysing digital MMSs with cluster algorithms

(Croce et al., 2018, 2020; Marsili et al., 2023):

such approaches, while very promising, have not

yet been duly explored. In addition, it is important

to emphasized that although it is appropriate to

identify groups of objects or components that de-

grade at similar rates, the ability to recognize such

groups based on the characteristics of the bridge

and its environment must be analyzed a posteriori

and not assumed a priori.

The aim of this article is to develop a concept

for the identification and understanding of ho-

mogeneous ageing classes of r.c. bridge compo-

nents. The framework is developed considering

r.c. bridges in Switzerland and the KUBA-DB

database, which collects the results of periodical

visual inspections on the objects.

The framework consists of three distinct phases,

to which three different data analysis techniques

correspond: 1) A phase based on unsupervised

learning, in which, through a cluster analysis of

the time sequences of the component condition,

homogeneous aging classes are identified; 2) A

phase based on supervised learning, in which a

random forest algorithm is applied, the degrada-

tion class is predicted based on other character-

istics of the bridge component, also related to

the bridge itself and its location; 3) A phase in

which a SHAP analysis is carried out, through

which the results obtained by applying the random

forest algorithm are explained and consequently

the factors that influence the prediction of the class

are better understood. The final aim of the article

is to develop an approach to the assessment of

the remaining useful life of existing infrastructure

components that is understandable for the infras-

tructure managers themselves, and therefore easy

to use.

The paper is articulated in the following parts:

Section 2 describes qualitatively the methods at

the basis of the proposed framework, Section 3

presents the case study at which the approach has

been applied and Section 4 draws some conclu-

sions.

2. Methods

2.1. K-means clustering

The k-means algorithm is an unsupervised learn-

ing approach finalized at clustering n observa-

tions into k groups in such a way that each ob-

servation belongs to the group with the nearest

mean (Aggarwal and Reddy, 2014). The mean of

the cluster is also referred to as cluster centroid

and it represents a prototype of the cluster. The

simplicity and efficiency of this algorithm have

made it widespread and popular. However, cer-

tain factors may impact the performance of the

algorithm, such as the initial choice of centroids,

which is necessary to get the algorithm started,

and the estimated number of clusters. The latter

is not given a priori, which is why the algorithm

is often supplemented by the calculation of a

performance measure called the Silhoutte Width,

based on which the optimal number of clusters can

be identified. This requires repeating the analy-

sis for an increasing number of clusters until the

Silhoutte Width has reached its maximum value.

The optimal number of clusters corresponds to the

model with the highest Silhouette Width.
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2.2. Random Forest algorithm

Random Forest (RF) is a supervised learning al-

gorithm consisting of a number of independent

decision trees (Breiman, 2001). A decision tree

model partitions the given dataset into two groups

based on a certain criterion until a given stopping

condition is met. At the basis of the decision tree

there are the so-called leaf nodes or leaves, which

represent an output label.

A disadvantage of decision trees is overfitting,

which will lead to poor generalization accuracy.

One way to improve generalization accuracy is to

build many individual trees by considering only

a subset of the observations obtained by boot-

strapping, and to average their predictions. The

ensemble of the so-developed models is the RF.

The RF model has greater predictive capacity than

a single decision tree, however while the latter

can be easily visualized, the former has a black

box character. Nonetheless, it is possible to gain

some insight on the complex model by calculating

the importance of each variable. This is obtained

by adding up the improvement in the objective

function given in the splitting criterion over all

internal nodes of a tree and across all trees in the

forest, separately for each predictor variable.

RF models are characterized by a set of hyper-

parameters, which can be tuned to improve pre-

dictions. The most important parameters are the

number of decision trees in the forest, the max-

imum number of features in each decision tree,

the minimum number of samples required to be at

a leaf node, the randomness of the bootstrapping

of the samples used when building trees and the

sampling of the features to consider when looking

for the best split at each node.

2.3. SHAP analysis

SHapley Additive exPlanations (SHAP) values are

an approach to explain machine learning black-

box models borrowed from game theory Lundberg

and Lee (2017). Shapley values are used to mea-

sure the contributions to a final outcome of each

player of a coalition, while preserving the sum

of contributions being equal to the final outcome.

Given a data-based AI prediction model, SHAP

values can be used to identify important predictors

among the features characterizing the data set. The

SHAP analysis consists in building a proxy model

of the black box model through changes in the

input and the assessment of the changes in the

prediction. If the outcome significantly changes

by changing the input value for a feature, the

feature for that data point is an important predictor

and it will have a high SHAP value.

The advantages of SHAP analysis are the follow-

ing: 1) it provides a local interpretation, by assess-

ing the contribution of each feature of the dataset

to single prediction; 2) at the same time, it also

gives a global interpretation, by showing whether

the feature has a positive or negative impact on

predictions; 3) it is model agnostic, which means

that it can be used to explain a large variety of

models including tree-based models and neural

networks.

In conclusion, the SHAP values reveal interesting

insights into how input variables influence the

machine learning model’s predictions, both lo-

cally, considering individual instances, and glob-

ally, considering the entire population, and are

able to do so regardless of the model used.

3. Application

3.1. The data

The Swiss Federal Roads Office (ASTRA) is

the operator of Switzerland’s road infrastructure,

which comprises a wide range of structures in-

cluding r.c. bridges. A very important activity in

the management of bridges and their maintenance

is the visual inspection carried out at regular inter-

vals, during which the condition of the structure

and its components is assessed and which thus

provides the basic information for planning main-

tenance work. A distinction is made between three

different types of inspection: primary, intermedi-

ate and special. During primary and intermediate

inspections, the focus is on identifying damage

processes and the information gathered during the

inspection is recorded in the KUBA-DB database.

A damage group consists of a set of homogeneous

damage processes within the same segment of

the structural element, which similarly affect the

functionality of the component. The severity with

which the damage afflicts the functionality of the
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element is assessed by means of an index with

values between 1 and 5. 1 means that no damage

is present, while 5 means that the damage has

reached a critical state such that the functional-

ity of the structural element is compromised. In

a subsequent step, the overall condition of the

structural member is evaluated, considering the

damage groups and their combined effect on the

safety and functionality of the component. The

judgments relating to each structural component

are finally aggregated at the level of the object, so

that an index expressing its overall condition can

be associated with it. The database collects not

only the results of visual inspections performed

on a regular basis, but also inventory data relating

to the objects, such as the year of construction of

the bridge, the bridge type, the segment of road to

which the object belongs, the altitude of the bridge

site, the size of the components. Further informa-

tion that is collected in the database concerns the

execution of maintenance interventions, such as

the type of intervention and cost. However, while

the condition and inventory data is complete, the

latter data is only partial.

In the KUBA-DB database, the bridge structure is

divided into many components. If each component

is considered individually, data on sojourn time in

each condition class may be scarce. Consequently,

those components that have a similar structural be-

havior have been grouped together, so that the data

set to be analyzed is more consistent. A distinc-

tion is mainly made between the superstructure

and substructure of the bridge: in the case of the

superstructure, elements such as deck slab, plate-

girder and cross-girder are grouped together; in

the case of the substructure, it is possible to group

components such as wing-walls and abutment.

3.2. The procedure

First of all, the k-means algorithm is applied to

identify groups of components having a simi-

lar deterioration development, which can be re-

ferred to as ageing classes. A characteristic of the

condition database is that it is unbalanced: the

results of visual inspections show that in most

cases the components of the bridges are in good

condition, assigning a condition index (CI) of 1

and 2. Conversely, results of inspections which

indicate an unsatisfactory condition of the com-

ponent (for which the component is assigned a

CI of 3 and 4) are much less frequent. The CI

5 indicating an alarming condition is very rarely

assigned. Accordingly, a cluster analysis is per-

formed using the k-mean algorithm, taking into

account the age of the component to which it is

assigned index 2 and index 3. Considering the

components to which also index 4 has been as-

signed results in an extremely limited data set,

so a cluster analysis can hardly be conducted.

By performing the cluster analysis and calculating

the Silhouette Width for different cluster models

characterized by an increasing number of clusters,

it can be concluded that models characterized by

two and three clusters have the highest Silhoutte

Width, whose values are around 0.5. However,

it is slightly higher for the model characterized

by two clusters. Since the difference in the per-

formance parameter is negligible, and in view of

the application of stochastic models to predict the

time at which a critical condition is reached, it is

still possible to choose the model characterized by

three clusters, which can lead to a more accurate

prediction of the remaining useful life. The three

groups correspond to homogeneous aging classes

and can be referred to as ”fragile,” ”normal,” and

”robust,” depending on the rate of degradation of

the components that make up each group, which

can be fast, normal, or slow.

Once the homogeneous ageing classes have been

identified, the RF algorithm is applied to the data:

the dependent variable is the ageing class of the

component, while the independent variables are

the characteristics of the component, such as the

year of construction of the bridge, the bridge

typology, the road section where the bridge is

located, the altitude of the bridge location, and the

size of the component. Categorical features such

as bridge typology and road section have been

encoded using the label encoding approach. This

approach is preferred when performing a SHAP

analysis, as the SHAP value of the categorical

variable is easier to calculate. When fitting the RF

model to the data, model hyper-parameters such as

the number of trees in the RF, the maximum num-
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ber of features considered to divide a node and the

maximum number of levels in each decision tree

are also tuned. The predictive ability of the RF is

then expressed through a confusion matrix and a

classification report.

In the next step, a global SHAP analysis is per-

formed. SHAP values quantify the importance for

a model of each feature in order to make correct

predictions. These values can be used to confirm

domain experience, or conversely to generate new

hypotheses and to validate new theories. The pur-

pose of the SHAP analysis is to provide a global

interpretation of the machine learning model and

understand the main drivers of predictions across

the population. This is accomplished by aggre-

gating the SHAP values for individual instances

across the entire population. These values can be

displayed using multiple plots, such as bar plot,

beeswarm plot and dependance plot.

The bar plot allows to examine the mean abso-

lute SHAP value for each feature across all data.

This quantifies, on average, the entity (positive or

negative) of the contribution of each feature to the

expected aging class. Features having higher mean

absolute SHAP values have a greater influence.

Compared to more traditional feature importance

measures, SHAP values have the advantage of

being more rigorous from a theoretical point of

view and, in some cases, they can be expressed

in more intuitive units of measure.

Beeswarm plots reveal not only the relative impor-

tance of features, but also their actual relationships

to the predicted outcome. Specifically, they show

how the underlying values of each characteristic

are related to the model’s predictions. When the

values of a feature have positive SHAP values

with respect to a certain value of the dependent

variable, it means that they contribute to its pre-

diction. Even the distribution of the points can be

informative, suggesting what is the magnitude of

the impact on the prediction of different feature

values.

Dependence plots are necessary to fully under-

stand the relationship between the values of a

feature and the predicted results of the model. The

dependence plot reveals the relationship between

SHAP values and feature values. In this plot, every

instance of the dataset is represented by a point.

The scatterplot represents the dispersion of the

variable SHAP values versus the variable under-

lying the row values. SHAP values above the line

y = 0 lead to prediction of the considered class

label. Vertical dispersion in the dependence plot

is due to interaction effects with other features.

This means that an instance’s SHAP value for a

feature is not solely dependent on the value of

that feature, but is also influenced by the values

of the instance’s other features. In many cases,

interaction effects are not particularly important,

but some applications show dramatic interactions

between features.

In conclusion, the research illustrated in this paper

consists of three steps: the first step is to apply

a cluster algorithm finalized at identifying homo-

geneous aging classes for r.c. bridge components;

the second step is to apply a RF model, consider-

ing the class identified with the cluster algorithm

as the dependent variable and the features not in-

cluded in the cluster analysis characterizing bridge

components as independent variables; and finally,

the SHAP analysis is performed, which yields a

plethora of plots able to support the interpretation

of the results of the RF and the task of features

selection, as well as hypothesis generation and

the development of an explanation for the bridge

component ageing classes. This interpretation is

important in the light of the use of the results of

the cluster analysis in the context of a broader

research, in which the application of stochastic

models is foreseen through which it is possible to

make estimates of the remaining useful life of the

component.

3.3. Results

3.3.1. Bridge substructure components

Fig. 1 shows the result of the cluster analysis

for the components belonging to the bridge sub-

structure. According to this result, three classes

could be identified. The ”fragile”, ”normal” and

”robust” classes contain 28, 96, 129 data points,

respectively. The value of the silhouette width is

0.49: although the data structure is not particu-

larly strong, it can be considered reasonable. In

average, fragile bridge substructures reach CI 2
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Substructure Superstructure
Precision Recall F1-score Support Precision Recall F1-score Support

Robust 0.82 0.85 0.84 27 0.94 0.83 0.88 41
Normal 0.75 0.68 0.71 22 0.71 0.86 0.77 28
Fragile 0.81 0.87 0.84 15 0.67 0.57 0.62 7
Accuracy 0.80 64 0.82 76
Macro avg 0.79 0.80 0.80 64 0.77 0.75 0.76 76
Weighted avg 0.79 0.80 0.79 64 0.83 0.82 0.82 76

Table 1.: Classification report expressing the predicting performance of the trained random forest model.

after 14.5 years and CI 3 after 21.2 years; normal

substructures reach CI 2 after 26.7 years and CI

3 after 37.2 years; robust substructures reach CI 2

after 40.2 years and CI 3 after 48.7 years.

The data set is divided into train and test, based

on which the RF algorithm can be trained and its

performance evaluated. Table 1 shows the result-

ing classification: an overall accuracy of 0.80 has

been obtained. Fig. 2 represents the bar plot which

shows the relative importance of each feature,

according to the mean SHAP values. The most im-

portant feature is ”Year of construction”, followed

by ”Road section”, while the feature “Bridge ty-

pology” has a very low importance and could be

disregarded by the model. Fig. 3 represents the

beeswarm plot showing not only the relative im-

portance of each features but also the relationship

between the values of the feature and the predicted

outcome. This plot reveals that high values of the

year of construction (thus corresponding to more

recent bridges and bridge components) contribute

to the prediction of the fragile class. By also con-

sidering the dependence plot (Fig. 4) it is possible

to notice that low values (thus corresponding to

older bridges and bridge components) contribute

to the prediction of the robust class. A possible

interpretation is that the results of the inspections

related to old bridges belonging to the fragile

class are not contained in the database, as data

collection only began in the 1990s, when maybe

these bridges had already been replaced by others

or subject to major maintenance work. On the

contrary, only the components of bridges built in a

more recent era and belonging to the fragile class

have already received a CI equal to 3, which there-

fore constitute this class only. The second most

important feature is the roadway segment, but it

has already a very low mean SHAP value. This

result may indicate that the evolution of the de-

terioration might depend slightly on traffic loads

and on some environmental conditions shared by

objects belonging to the same road segment. How-

ever, to test this hypothesis, it would be necessary

to collect more data and conduct a more in-depth

analysis based on additional variables.

3.3.2. Bridge superstructure components

Fig. 5 shows the result of the cluster analysis for

the components belonging to the bridge super-

structure. Three classes could be identified also

in this case. The ”fragile”, ”normal” and ”robust”

classes contain 37, 85, 89 data points, respectively.

The value of the silhouette width is 0.45, sug-

gesting a slightly weaker data structure than the

components belonging to the bridge substructure.

In average, fragile bridge superstructures reach CI

2 after 22.3 years and CI 3 after 31.3 years; normal

superstructures reach CI 2 after 33.1 years and CI

3 after 42.9 years; robust superstructures reach CI

2 after 42.6 years and CI 3 after 50.4 years.

The RF algorithm is trained and its performance

evaluated: Table 1 shows the classification report

resulting from the application of the RF, for which

overall accuracy of 0.82 has been obtained. Ac-

cording to the bar plot showing the mean SHAP

values (Fig. 6), the most important feature is again

the year of construction, while the feature “Bridge

typology” has again a very low importance and

could be disregarded by the model. By consid-

ering the beeswarm plot in Fig. 7, higher values

of the year of construction (thus corresponding

to more recent bridges and bridge components)

contribute to the prediction of the class ”fragile”,

while lower values (thus corresponding to older
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bridges and bridge components) contribute to the

prediction of the class ”robust” (as revealed by

the dependence plot in Fig. 8), and intermediate

values contribute to the prediction of the class ”ro-

bust”. These confirm the results that were found

by analysing the bridge substructure. However, it

should be notices that in the case of the bridge

superstructure, the range of values for the year of

construction is smaller and there are no compo-

nents in the dataset of recent construction (after

the year 1987). The second most important fea-

ture is ”Altitude”, however, looking at the relative

SHAP plots, it is not possible to establish a clear

correlation between its values and the aging fam-

ily. The impact of altitude on infrastructure aging

rate can have opposing effects, and these results

were expected.

4. Conclusions

This article suggests a procedure to identify and

interpret homogeneous ageing classes for rein-

forced concrete bridge components. In the ap-

proach three different methodologies are com-

bined, namely a cluster analysis, a random forest

algorithm and a SHAP analysis. The SHAP anal-

ysis allows to explain the results of the classifi-

cation obtained applying the random forest algo-

rithm and to highlight which variables influence

the prediction of the homogeneous ageing classes

the most. It emerges that the year of construction

of the bridge and therefore of the component has

a strong impact on the prediction. Other variables

affect the prediction, but to a lesser extent. This

allows us to formulate some hypotheses that can

deepen the explanation of this result. It is possible

to conclude that this analysis offers relevant in-

sights for the use of ageing classes in the context

of a broader research, aimed at improving the es-

timation of the remaining useful life of reinforced

concrete bridges. Finally, the authors would like to

remark that the application of data-based AI mod-

els for the prediction of ageing class or component

sojourn time in a given condition class requires a

particularly critical attitude.
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Fig. 1.: Results of the cluster analysis (bridge

substructure).

Fig. 2.: SHAP bar plot showing the overall

relative importance of each features (bridge

substructure).

Fig. 3.: SHAP beeswarm plot with respect to the

prediction of the class ”fragile” (bridge

substructure).

Fig. 4.: SHAP dependence plot of ”Year of

construction” with respect to the prediction of

class ”normal” (bridge substructure).

Fig. 5.: Results of the cluster analysis (bridge

superstructure).

Fig. 6.: SHAP bar plot showing the overall

relative importance of each features (bridge

superstructure).

Fig. 7.: SHAP beeswarm plot with respect to the

prediction of the class ”fragile” (bridge

superstructure).

Fig. 8.: SHAP dependence plot of ”Year of

construction” with respect to the prediction of

class ”normal” (bridge superstructure).


