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Lifetime models have been predominantly developed using constant but accelerated conditions to assess their base
lifetime and the acceleration factor under different conditions. This approach is expensive and time-consuming,
especially for highly reliable devices, as found in electrical distribution systems. On the other hand, online
monitoring provides a large amount of data on the conditions and failures of the fleet of devices. However, constant
conditions are not generally present. Therefore, developing efficient methods to estimate parameters from field data
is of interest.
Proportional hazard (PH) and accelerated failure time (AFT) models are commonly used to describe the failure of
devices under time-varying stress factors. This work analyses how these can be used efficiently to estimate reliability
models’ parameters, focusing on real-world electrical distribution devices.
The reliability function of a highly reliable device is challenging to acquire, as failure will generally only happen
after a long time, and most of the time, devices are not run until failure. In addition, the dependency of the failure
rate on environmental conditions the device is operating in requires to make a series of experiments to infer the
acceleration factors in the classical setting. Therefore for such devices, accurate reliability curves or hazard rates
are often not known, which limits the application of lifetime models, e.g., for maintenance or service planning. Up
to now, mainly the “average” reliability of a type of device was used, meaning that the environmental conditions
were often unknown. For this, most often, field or fleet data was already used. Where even this was not possible,
the reliabilities of whole classes of devices were studied. Overall the effect of an aggregation of failure data over a
diverse population will lead to a spread of the reliability curve compared to the one using a specific device type or
specific environmental conditions, hindering a precise prediction of its failure. It is therefore of interest to find ways
to make use of all available information to improve this. We explore this in this study for two different models and
using simulated failure data coming from real environmental conditions.

Keywords: Proportional hazard model, Accelerated failure time model, Field data, Variable conditions, Electrical
distribution, Capacitors, Breakers.

1. Introduction

Whereas in the past, there was no other ap-
proach apart from a general assessment of the
environment, e.g., in terms of application or
general installation conditions, to incorporate
effects in lifetime models, more and more de-
vices are now equipped with additional sen-
sors, which have the capability to capture

them in details. This capability is made possi-
ble by enhanced connectivity, exemplified by
the Internet of Things (IoT). Whereas this
helps with understanding the usage condi-
tions, it can also be combined with failure
information, e.g., from service calls. Digital-
ization also allows for the automatic and re-
liable tracking of individual devices in the
field, of full devices, or even components using
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printed serial numbers, unique bar codes, or
component lists that can be determined given
the device’s serial number.
We expect that in the near future, this can

be used to improve our knowledge of device re-
liability, especially concerning its dependency
on external influence factors. In this work, we
explore methods of how this can be used in
cases that are typical for the electric device
industry. Despite us having this application in
mind, we still see this topic as being also of
interest to other areas.
Specifically, we consider two general sur-

vival analysis methods: the Cox proportional
hazard (PH) and the accelerated failure time
(AFT) model. The PH model is a popular
choice for analyzing failure data in a large
number of applications. It has some advan-
tages with respect to its flexibility with respect
to the modeling. The AFT model, on the
other hand, is popular in engineering applica-
tions, where it was originally used to capture
changes in the usage of a device.

2. Censoring in the case of field data

One of the specialties of reliability analysis is
the presence of censored data. For dedicated
experimental data, the most common scheme
is right censoring, meaning that devices are
still functional at the end of the test, of-
ten having one common censoring time hori-
zon. For field data, more complex censoring
schemes need to be considered. For typical
devices in high voltage installation, one has
quite strong right censoring, as they are not
run to failure but preventively maintained
or replaced. Left truncation, that is, devices
failing without being recorded, is expected
to be less of a concern for online monitored
devices, as the dates of production, installa-
tions, and the start of usage are available. For
devices that serve as protection devices and
are therefore only operated rarely, failures are
often only observed after some time, either
during a scheduled inspection or during a
normal operation. If the time between such
operations is long, one needs to treat them

as interval-censored. Whereas normal devices’
removal from operation might be unnoticed,
this is usually not an issue due to the assumed
presence of online monitoring. For detailed
modeling, the type of failure might also not
be available. Additional loss of data is possible
for the environment data, e.g., if data from
the device is unavailable or lost for some time.
Here one would expect these gaps to be filled
using historical data recorded before or after
the missing interval. Devices that have their
online monitoring removed completely, e.g.,
due to an end of a contract, can be treated
as normal right-censored data.
Other situations can be present but are only

noted here for completeness: Devices might
record their conditions, but data is only made
available after a failure, e.g., when devices
are repaired, and data is only copied from
the device then. A fleet of devices, some with
and some without online monitoring, might be
available, with failure data recorded for both
types. Finally, the choice of online monitor-
ing installed might be linked to, e.g., difficult
conditions, which can disturb the analysis, as
it assumes the monitored devices represent
the general fleet. In the following, we restrict
ourselves to a situation that we expect to be
typical for a first investigation, taking only the
right censoring into account.

3. The Weibull Model

Two different approaches to survival analysis
are found in the literature: the reliability curve
or its related functions are assumed to be
of a parametric form, or a non-parametric
approach is taken. Whereas in an electrical
system, the number of devices deployed, and
therefore available for the analysis, is large,
we do not expect to have a large number of
failures within the observation time interval.
If, in addition, devices are typically explor-
ing very different environmental conditions, a
non-parametric approach will, in general, be
rather uncertain.
An alternative is using a parametric form,

restricting its shape substantially but reducing
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the uncertainty. The most commonly used
model is the Weibull distribution, Abernethy
(2005), according to it, the failure probability
density function f(t), the reliability function
R(t), and the failure probability distribution
function F (t) in the following form:

f(t) = β

α

(
t

α

)β−1
exp

[
−

(
t

α

)β
]

(1)

R(t) = 1 − F (t) = exp
[

−
(

t

α

)β
]

(2)

where α is the scale and β the shape pa-
rameter. From these the hazard rate h(t) and
cumulative hazard rate H(t) can be derived as

h(t) = −d ln(R(t))
dt

= dH(t)
dt

= β

α
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(
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4. Reliability models under variable
conditions

The conditions will generally be variable for
devices in the field, meaning varying with
time. This is in contrast to classical accel-
erated testing strategies, where mostly con-
stant conditions are used Meeker et al. (2022);
Kalbfleisch and Prentice (2002). We first dis-
cuss the two most commonly used models for
time-constant conditions and their general-
ization to time-varying ones. These are the
proportional hazard (PH) and the accelerated
failure time model (AFT). Whereas the PH
model is typically used in medical models, the
AFT model has been applied extensively for
industrial devices.
In the PH model, one assumes a reference

hazard rate, which increases or decreases de-
pending on the conditions e:

hP H(t) = h0(t)A(e)

where h0(t) is the base hazard rate as a func-
tion of time for some reference conditions e0,
and A(e) is the acceleration factor depending
on the real value of e. If the conditions are

constant over time, the reliability function is
of the form:

RP H(t) = exp
(

−A(e)
∫ t

0
h0(t′)dt′

)

In the case of variable conditions e(t), one
gets:

hP H(t) = h0(t)A(e(t))

leading to

RP H(t) = exp
(

−
∫ t

0
h0(t′)A(e(t′))dt′

)
In the AFT model, the reliability depends

on an “effective time” τ , which depends on e

as

τ = tB(e)

where B(e) is the equivalent acceleration fac-
tor for the AFT model. The reliability in this
model is therefore given by

RAF T (t) = R0(τ) = R0(tB(e))

and correspondingly

hAF T (t) = B(e)h0(B(e)t)

Under variable conditions e(t) one gets

τAF T =
∫ t

0
B(e(t′))dt′

and

RAF T (t) = R0
(
τAF T

)
Both models can be applied independently of
the form of the base model of the hazard rate
or reliability. Especially for the PH model,
non-parametric approaches, e.g., the Kaplan-
Meier estimator, exist; this is less common for
the AFT model. We are making use here of the
Weibull distribution. For constant conditions,
one gets the reliability in both models as:

RP H(t) = exp
(−(t/α)β A(e)

)
RAF T (t) = exp

(−(B(e)t/α)β
)

The two are of the same form, only requiring a
redefinition of the acceleration factors accord-
ing to

A(e) = B(e)β .
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The Weibull distribution is known to be the
only model where PH and AFT models lead
to the same form Bagdonavicius and Nikulin
(2001). But this property is only valid for
constant conditions, whereas for variable ones,
one gets for the PH model:

RP H(t) = exp
(

−
∫ t

0
A(e(t′))β

α

(
t′

α

)β−1
dt′

)

and for the AFT model:

RAF T (t) = exp

⎛
⎝−

(∫ t

0 B(e(t
′))dt′

α

)β
⎞
⎠ (3)

Using the relation between the two accel-
eration factors for constant conditions, one
can express the acceleration factor in the PH
model A(e(t′)) in terms of the one in the AFT
model B(e(t′)) to get a compatible form as

RP H(t) = exp
(

−
∫ t

0

β

αβ
(B(e(t′))β (t′)β−1dt′

)
,

(4)
showing that the difference is coming from
how the integration over the conditions is
done.
Note that within the AFT model, the ef-

fect of variable conditions is independent of
when-in-time they apply, meaning that severe
conditions towards the end of life have the
same effect as at the beginning. This is in con-
trast to the PH model, where the increase of
the base hazard rate makes severe conditions
later more damaging and reduces the lifetime
stronger.
In almost all cases, the acceleration factor

A(e) or B(e) is in the form of a power law, po-
tentially after a reparameterization of e (e.g.,
e = exp(−1/T ) in the case of thermal effects),
leading to

B(e) =
(

e

e0

)θ

= (e)θ ,

where e0 defines some reference conditions,
which we will set to one in the following, and
θ is the parameter describing the severity of
the effect. The power-law form is also true for
the acceleration factor A(e) in the PH model,

with a simple redefinition of the exponent of
θ to βθ.

5. Efficient calculation of effective age
and cumulative hazard rate

In order to determine the parameters of the ac-
celeration model from field data, one obstacle
is the long lifetime and a large amount of data.
As the effect is nonlinear, a recalculation is
necessary when parameters are changed, mak-
ing optimization with respect to parameters
computationally demanding. It is, therefore,
of interest to develop methods that can sum-
marize the varying conditions over a longer
time scale while allowing for a change of the
model parameters within them.
In the AFT model, one is looking for an

efficient way to approximate

τ =
∫ t

0
(e(t′))θ dt′ (5)

One solution to this is proposed in Caramia
et al. (2000). The integral is replaced by an
expectation value over the distribution p(e) of
e(ti) from the sampling done, approximating
the rate distribution de/dt over a suitable time
interval. This leads to the alternative form of
the integral in (5):

τ = t

∫
(e)θ p(e)de

or for increments Δτ over a time interval. This
approach is suitable for a single acceleration
factor but becomes more cumbersome if more
than one is considered. The acceleration fac-
tors are multiplied, and it is not expected that
they are generally statistically independently
distributed. However, this is a good assump-
tion if the influencing factors have indepen-
dent origins. In other cases, suitable multidi-
mensional distributions need to be considered.
In this work, we restrict ourselves to assumed
statistically independent factors. In Caramia
et al. (2000), the distribution is not further
specified.
Here we propose the use of parameterized

forms allowing for analytical calculations as
an additional step. Two cases are discussed:
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If e is positive but unbounded, a Gamma
distribution is a suitable model. If e is ad-
ditionally bounded, especially e′ ∈ [0, 1], the
Beta distribution is convenient to be used.
The Gamma distribution is given by

p(e|a, b) = ba

Γ(a)ea−1 exp(−be) (6)

where the two parameters a and b can be esti-
mated by the “method of moments” from the
mean μ and variance σ2 of the measurements
ei. In the simplest approach, this is given by

a = μ2(e)
σ2(e) , b = μ(e)

σ2(e)
The expectation value over the distribution is
known analytically as

E[eθ] = Γ(a + θ)
Γ(a)bθ

(7)

Changes in the distribution over time, e.g.,
due to seasonal effects, can be handled by
aggregating mean and variance only over some
fixed time periods instead of the whole time
series.
The second example follows in the same

way: The Beta distribution is given by

p(e|a, b) = 1
B(a, b)ea−1(1 − e)b−1

with the method of moments estimating the
two-parameter a and b as

a = μ(e)
(

μ(e)(1 − μ(e))
σ2(e) − 1

)

b = (1 − μ(e))
(

μ(e)(1 − μ(e))
σ2(e) − 1

)

with the restriction that σ2(e) < μ(e)(1 −
μ(e)). As before, the expectation value over
e is known analytically as

E[eθ] = B(a + θ, b)
B(a, b) = Γ(a + θ)Γ(a + b)

Γ(a + θ + b)Γ(a) (8)

In the PH model case, we need to calculate

H(t) =
∫ t

0

β (t′)β−1

αβ
(e(t′))θβdt′

In contrast to the AFT model, we can not
separate the averaging over time from the time

evolution of the hazard rate. Nevertheless, we
expect the same procedure to be applicable as
long as we consider time intervals, where h0(t)
changes minimally compared to variations of
e. This means an average over days to months
is probably still reasonable.

6. Maximum likelihood estimation
formulation

Maximum likelihood estimation (MLE) is one
of the most common approaches for estimating
the parameters of a model using the data. Al-
ternatively, some background knowledge can
be incorporated, leading to the maximum a-
posterior (MAP) or equivalent to a penal-
ized maximization approach. For simplicity,
we consider here only the MLE.
The log-likelihood function l(Ψ) =

∑
i li(Ψ)

over all devices, including potential censoring,
is required. Assuming only potentially right-
censored data ci ∈ {0, 1} one can express it
in terms of the hazard and cumulative hazard
function using f(ti) = h(ti)R(ti) as

li(Ψ) =
∑

i

(1 − ci) ln(h(ti|Ψ)) − H(ti|Ψ)

where Ψ comprises the Weibull parameters
α, β, as well as the one of the acceleration
factor(s) θ. Using the Weibull model, we get
for the PH model:

lP H
i (Ψ) =

∑
i(1 − ci) ln

(
βtβ−1

i e(t)βθ

αβ

)

−
t∫

0

β

α
(e(t′))θβ (t′)β−1dt′ (9)

and for the AFT model:

lAF T
i (Ψ) =

∑
i(1 − ci)·

ln
(

βe(t)θ
(
τAF T

)β−1

αβ

)
−

(
τAF T

α

)β

(10)

where

τAF T =
t∫

0

(e(t′))θ dt′.

The MLE is then determined by numerical op-
timization. Please note, that in both models,
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Fig. 1. Density distribution of ambient temperature
and relative humidity overall times and weather stations
used in the analysis.

the derivative with respect to the parameters
Ψ can be done analytically, so both gradient-
and hessian-based approaches can be used.

7. Application to realistic environmental
data and simulated failures

We have applied our approach to simulated
failure times using realistic environmental
data. Temperature and relative humidity were
used as environmental factors, taken from an
open database DWD Climate Data Center
(CDC) (2019). This database consists of 10-
minute measured data from a large number of
meteorological weather stations in Germany
for a period of ten years, where we have
picked a random sample of 107 stations and
extended data to 25 years. The distribution of
relative humidity and ambient temperature is
very broad, see Figure 1; however, it is mostly
concentrated between 0◦C and 20◦C for the
temperature and above 0.6 for the relative
humidity.
For the failure data, we have used Weibull

parameters α = 5.5(years) and β = 3, which
are typical values used in a wide range of
applications, e.g., for electronics or mechanical
components relevant for breakers. Finally, for
the acceleration model, we have assumed a
Peck-Hallberg model with M = 2.6 for the hu-
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Fig. 2. Top: Reliability curve comparing PH and AFT
models for temperature and humidity variability at one
weather station, including results using average values.
Middle: Relative humidity. Bottom: Ambient tempera-
ture over 25 years at weather station 02115.

midity acceleration factor AFH with relative
humidity RHref = 0.8, and Ea = 0.7 eV as the
activation energy for the temperature accel-
eration factor AFT with relative temperature
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Tref = 25◦C, according to Feinberg (2016);
Hallberg and Peck (1991):

AFH =
(

RHuse

RHref

)M

AFT = exp
(

Ea

kB

[
1

Tref
− 1

Tuse

])
A(e) = AFH · AFT

We will call this typical set of α, β, M , and Ea

parameters a ground truth set of parameters.
An example of the calculated reliability for

AFT (Eq. (3)) and PH (Eq. (4) ) model,
respectively, is presented in Figure 2. As ex-
pected, both models give identical results for
constant (average) environmental conditions.
Reliability under variable conditions has a
wavy form due to seasonal variations, mainly
due to the ambient temperature variation. It
can also be seen that variable conditions have
a larger effect on the PH model than on the
AFT model. This result can be intuitively ex-
plained by the form of the integration in both
models, where severe environmental factors
within the variation contribute stronger in the
integral in Eq. (4) compared to Eq. (3).
As the integration over the variable con-

ditions can go up to 25 years and with the
high frequency of data the calculation is rather
computationally expensive. We have also ex-
plored the accuracy of the approach in Sec. 5.
An approximation using the Gamma distri-
bution was used as the temperature effect

is positive and unbounded. For the relative
humidity, bounded between 0 and 100%, the
Beta distribution is appropriate. Binning was
done over a day, week, and month (28 days);
see Fig. 3. Results show that keeping only
mean and standard deviation over the aver-
aged time period agrees well with the original
high-frequency detailed 10-minute data. Aver-
aging over a longer period (e.g., over an entire
season), the Gamma and Beta assumptions for
the distribution of environmental data are no
longer valid.
The failure times are sampled from the

calculated cumulative distribution function
(CDF) of each meteo-station with randomly
selected time-horizon between [2, 10] years.
Time-horizon corresponds to the assumed cur-
rent age of the device to censor the data. We
chose 10 devices per environmental data set
(107 stations), i.e., the total set of failure data
consists of 1080 censored and failure times.
On average, from the total failure data, the
failures take in the range from ∼13% to ∼15%
for the PH model and from ∼5 to ∼7% of
failure data points for the AFT model. Note
that the number of failures is higher in the
PH case, as confirmed by the lower reliability
curve in Fig. 2.
Using both a numerical optimization of the

log-likelihood (Eqs. 9 and 10), we have deter-
mined the MLE of the four parameters α, β,
M and Ea. The results of a larger number of
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Table 1. Final parameters estimations from MLE for

PH and AFT models.

PH AFT Ground
truthValue StdDev Value StdDev

α 5.635 0.3533 5.289 0.9338 5.5
β 3.269 0.1861 3.288 0.2939 3.0
M 2.467 0.2447 2.718 0.5845 2.66
Ea 0.645 0.0602 0.694 0.1183 0.7

repetitions of the failure time generation and
analysis are summarized in Figure 4 and Table
1, giving a hint on the expected accuracy of
the approach.
Comparing the loglikelihoods in Eqs. (9)

and (10) using failure data generated by the
PH model lead to a significant difference be-
tween models, which allows us to conclude
that the approach is able to distinguish be-
tween the two models in the case of variable
environmental conditions.

8. Summary and Conclusion

This paper explores a possible approach to
parameter estimation of lifetime models using
field-deployed devices recording variable envi-
ronmental conditions and failures for the case
of a Weibull distribution and a Peck-Hallberg
form to describe the influence of temperature
and relative humidity. The aspects studied
were the formulation of a model for the two
most commonly used approaches to describe
acceleration under variable conditions (PH
and AFT model). The MLE approach for
parameter estimation was used on a set of
data using realistic environmental conditions
together with simulated failure data.
This work is the first step in using field data

(environmental measurements and failure in-
formation) to improve the knowledge of the
lifetime of devices. In the current framework of
this work, a sensitivity analysis of the param-
eters in both models for generating synthetic
failure data has not been conducted. Per-
forming such a sensitivity analysis would ne-
cessitate additional computational resources.
However, it is important to note that the main
objective of this study is to emphasize the sig-

nificance of accounting for variations observed
in the field data. In the case of highly reliable
products, where accelerated lifetime testing is
time-consuming and costly, this seems to be a
viable option, especially with the deployment
of connected devices that can collect the data.
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