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Transformers are key components in the power system and transformer failures can cause long power outages with
high costs to society. Transformer failures are rare, and each case is unique with respect to its consequences. This
shapes the data and statistics we have available to predict future failures and related consequences. Models to support
risk assessments and asset management decisions for these critical assets should rely on practical approaches to
include both available data as well as expert judgements. This paper looks at outage duration, an important parameter
in risk evaluation and asset management decisions. It presents a transformer outage duration model which can be
conditioned on relevant asset management input variables. A use case is constructed to exemplify the usage of the
model in an asset management decision context.
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1. Introduction

Modern society is dependent on a reliable sup-

ply of electricity, and extraordinary events in the

power system, such as major blackouts, can have

severe consequences. Long power outages are par-

ticularly critical and can have societal costs which

go well beyond the direct financial damages the

outage may cause (Dugan et al., 2023). Trans-

formers are key components in the power system

and transformer failures can cause long average

outage durations, with very long outlier observa-

tions. Combined with their large investment costs,

informed asset management of transformers is an

important part of power system risk management

(Khuntia et al., 2016; Ekisheva et al., 2016).

This paper presents a model for estimating

transformer outage durations, extending previous

work on overhead transmission lines (Kiel and

Kjølle, 2020). A Bayesian Network (BN) ap-

proach is used to build the model, and parame-

ters are populated by eliciting expert judgments

to compensate for scarce data when neccessary.

The model constructs outage duration distribu-

tions conditional on relevant asset management

input variables, specifically component condition

or the provision of spare parts. Making use of

the full distribution of estimated outage dura-

tions, rather than only the expected value can con-

tribute to communicate potentially extreme events

to decision-makers. A case study is constructed

to show the applicability of the outage duration

model as an asset management decision support

tool, where it is used to evaluate the impact of

different spare part strategies on key reliability of

supply indices.

2. Theory

Asset management involves balancing of costs,

risks, opportunities and performance related to

assets (ISO, 2014). The choice of maintenance

and spare strategies, investment- and operational

costs, and criticality of components are all highly

relevant questions, affecting a risk-based approach

to asset management decision making. Knowl-

edge of the failure rate and outage duration of

assets also inform system development by iden-
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tifying weak parts of the grid, or short-term oper-

ation as an aid for credible risk analyses (Mirhos-

seini and Keynia, 2021; Abu-Elanien and Salama,

2010; GARPUR Consortium, 2015). The concept

of resilience is closely related to that of risk and

is particularly focused on the ability to prepare

and recover from an unwanted event. Managing

for resilience thus involves the ability to plan and

prepare for an unwanted event, and if necessary,

rapidly recover (Zio, 2018).

Transformer outages can have large conse-

quences. Temporary failures may only require

switching actions, but a permanent fault re-

main unless it is removed by some intervention

(ENTSO-E, 2021), such as repair. The latter can

cause outages with very long outage durations.

The outage duration of transformers are tied

to which component of the transformer fails and

can range from a few hours to a year or more,

and the failure of some components often leads

to the transformer being scrapped and replaced

(Ekisheva et al., 2016; Mbuli et al., 2020; Ten-

bohlen et al., 2011). A distinction between ac-

tive parts (windings, core and oil) and non-active

parts (tap changer, bushing, cooling system, etc)

is made in Toftaker et al. (2023), where the former

components are understood as non-repairable due

to the associated repair costs, while the latter are

treated as repairable. The failure of an active part

is associated with a breakdown and a need for a

full replacement of the transformer, consequently

leading to long outage durations.

Transformers can be considered strategic spare

parts (Cavalieri et al., 2008): Transformers have

a critical role in the power system, and are of-

ten highly specific in their production with avail-

ability limited to certain suppliers. They are also

expensive, with unforeseeable wear-out times and

long lead times. Thus, it is necessary to strike the

right balance between cost and benefit when de-

ciding on spare transformer inventory to cover for

unforeseen failures (Mijailovic, 2013; Hamoud,

2012; Wang et al., 2002).

There have been developed numerous meth-

ods to estimate the current and future failure rate

of individual transformers, based on e.g. aging

models and health indices which is used to give

insight into the transformer condition and fail-

ure probability (Foros and Istad, 2020; Jürgensen

et al., 2016; Azmi et al., 2017). These variables

are affected by different maintenance strategies

(Mirhosseini and Keynia, 2021; Abu-Elanien and

Salama, 2010). Importantly, the condition of the

transformer affects which component is more

likely to fail, and some component failures are

more likely than others to lead to a transformer

breakdown. This, in turn, affect the demand for a

spare transformer.

2.1. Risk and uncertainty

There are societal aspects that must be considered

in risk management of power systems, and accept-

able risk in the power system is a political question

that goes beyond pure economics: Certain conse-

quences are not acceptable due to their severity,

impacted customers or frequency, regardless of

the socieconomic optimum (Doorman et al., 2006;

Smit et al., 2006).

There are many different definitions of risk

(Aven and Renn, 2009), but it is here understood

in the classical sense as a set of triplets describ-

ing a scenario and its associated probability and

consequence (Kaplan and Garrick, 1981). In this

traditional interpretation of risk, uncertainty is

described as an addition to potential damage, or

a variation around a central tendency akin to a

statistical error-term. Other interpretations take

a broader approach, where uncertainty is under-

stood as a range- or cause of variation, which may

or may not be quantifiable (Samson et al., 2009).

Uncertainty is often divided into aleatory and

epistemic uncertainty encompassing inherent or

irreducible randomness, and lack of knowledge

or data, respectively. This distinction is often a

matter of subjective interpretation, but can guide

modeling choices and measures to reduce or com-

municate uncertainties (Kiureghian and Ditlevsen,

2009; Winkler, 1996). Another categorization is

that of parameter-, model- and completeness un-

certainty (Vesely and Rasmuson, 1984; Parry,

1996). Parameter uncertainty can be understood

as being a property of the input data, model

uncertainty is related to the appropriateness of

the model and methods employed, while com-
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pleteness uncertainty is related to what is or is

not incorporated into the model. These uncer-

tainties should be communicated to a decision-

maker. Subjective probabilities or interval ranges

of outcomes are some available approaches to

quantify uncertainty, however model and com-

pleteness uncertainty which are more difficult to

quantify could be communicated through other

means, such as transparency of modeling choices

and what is included in the final model (Flage

et al., 2014; Parry, 1996).

2.2. Bayesian networks and expert
judgments

One method to reason under uncertainty is by

using a BN, which is a directed acyclic graph

where edges represent conditional dependencies

between a set of variables represented as nodes.

The joint probability distribution of the model

is given by the chain rule for BNs in Eq. (1):

The probability of a random variable Xi is given

by its parents, Pa(Xi), making it conditionally

independent from other variables in the BN. A BN

is thus a transparent and efficient way of modeling

causal relationships between variables (Pourret

et al., 2008; Langseth and Portinale, 2007).

P (X1, ..., Xn) =
∏

i

P (Xi|Pa(Xi)) (1)

Jakeman et al. (2006) and Chen and Pollino

(2012) provides guidelines for the development

and evaluation of BN models. They suggest that a

conceptual model describing existing knowledge

– i.e. as an influence diagram – is constructed

in cooperation with domain experts and relevant

stakeholder groups to serve as a starting point for

structuring the final BN. Model parsimony should

be sought after in the BN. Model complexity,

depth, and variables should be subject to stringent

evaluation before inclusion into the model. The

model can be parameterized using e.g. statistical

data, known models, or expert judgments.

The Norwegian disturbance database collects

component reliability data from the Norwegian

power system, but repair and outage duration data

is not mandatory to report (Kjølle et al., 2016),

and there is scarce statistics on transformer outage

durations in Norway. Lack of available data and

a variety of preconditions for each failure makes

it hard to characterize and generalize failure be-

havior to predict future failures (Rocchetta et al.,

2018). One possible solution to this challenge is to

use expert knowledge. Expert judgments are quan-

tifications of experts’ beliefs, which can compen-

sate for limited data. Different methods of expert

elicitation incorporating uncertainty are discussed

in Hanea et al. (2021). Although there are limited

empirical comparisons between available meth-

ods, the recent IDEA protocol (Hemming et al.,

2018) offers a well structured method of eliciting

continuous value distributions.

3. Model development

The understanding of outage duration in this paper

follows that found in ENTSO-E (2021), as the

period from the initiation of an outage occurrence

until the component or unit is returned to the in-

service state, with some limitations: The proposed

model assumes no voluntary waiting time and that

the component is re-energized once it is able to

perform as required/reach the up state as defined

by the IEC (2015). The model is only applica-

ble to estimate outage durations assuming that a

permanent fault has already occurred and makes

no attempt to model individual transformer failure

frequencies.

A conceptual model of outage duration was

developed in cooperation with experts from the

Norwegian Transmission System Operator (TSO),

using the understanding of repair time as defined

by the Norwegian FASIT system and ENTSO-E

(Kjølle et al., 2016; ENTSO-E, 2021) as a start-

ing point. The conceptual model was reduced in

cooperation with the domain experts, considering

which variables and relationships had a substantial

impact on transformer outage durations, and what

was possible to model. The model also included

relevant risk-influencing factors as input variables,

such as the unit’s technical condition, the tim-

ing of the failure, the provision of spare trans-

formers, and the accessibility of the failure site.

The resulting model after reducing the conceptual

model can be seen in Fig 1. The IDEA protocol
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Input variables

Model output

Timing Condition Spares Accessibility

Mobilization:
People

Component Transport

Breakdown

Install
time

Repair
time

Mobilization:
Equipment

Outage
duration

Fig. 1. Final model structure. Continuous variables
illustrated by ellipses with a bold outline.
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Fig. 2. Modelled outage duration process.

(Hemming et al., 2018) was used for expert elici-

tation of realistic minimum and maximum values,

and best estimates for all continuous variables

– except the outage duration – which was used

to parameterize the variables as modified PERT

distributions (Moskowitz and Bullers, 1979). The

proposed model is a set of connected BNs which

generates samples from these five key variables,

which is combined into an outage duration.

The logic behind combining these samples into

an outage duration is shown in Fig. 2: A failure

in the active part of the transformer is consid-

ered as leading to a transformer breakdown, and

consequently, an outage duration timeline con-

sisting of mobilization, transport, and installation

of a new transformer. Alternatively, if there is

no transformer breakdown, the timeline consists

of mobilization and repair time. The mobiliza-

tion of people, and the mobilization and transport

Table 1. Variable descriptions.

Type Variable Categories

C
at

eg
o

ri
ca

l

Timing 1 - Worst
2 - Expected
3 - Best

Condition 1 - Best
2
3
4
5 - Worst

Spares 1 - None
2 - Warm storage
3 - Cold storage
4 - Central storage (fit)
5 - Central storage (unfit)

Accessibility 1 - Worst
2 - Expected
3 - Best

Component 1 - Winding
2 - Core
3 - Oil
4 - Bushings
5 - Tap-changer
6 - Other

Breakdown 1 - Yes
2 - No

C
o

n
ti

n
u

o
u

s

Mobilization: People
Transport
Repair time
Install time
Mobilization: Equipment
Outage duration

of equipment are considered parallel processes,

while the physical work at the substation site is

either performed as a repair of a component or the

installation of a new transformer. This represents a

simplification compared to existing definitions but

has been found fit for purpose in cooperation with

domain experts during the model development.

A more detailed description of the variables in

the model is presented in Table 1. The relationship

between the technical condition of a transformer

and the probability of a failure of the active part

was implemented using the methods developed in

Foros and Istad (2020). The number of categories

in the variables – and thus the number of expert

elicitations needed to parameterize the model –
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Fig. 3. Model input values, portfolio of transformers.

Fig. 4. Illustrative example of outage duration model
output. 10 000 samples.

was kept to a minimum. A new transformer must

be ordered from the supplier in the event of a

breakdown if there is no spare in storage. Warm

storage indicates that a spare transformer is lo-

cated on-site and can be put into operation through

limited effort and switching actions, whereas cold

storage may require moving and installation of an

on-site spare. Spares located at a central storage

must be mobilized and transported to the failure

site, and may either fit to be installed directly upon

arrival, or need adaptations to accommodate the

spare at the fault location.

The proposed model can be utilized in differ-

ent ways. Single samples of transformer outage

durations can be generated for use in a Monte

Carlo Simulation (MCS) based reliability analy-

sis, which is especially relevant when the distribu-

tion of input parameters change during the course

of the simulation. Taking repeated samples would

generate an outage duration distribution for the

transformer, where input parameters are uncertain.

Repeated samples could also be used to describe

the estimated outage duration of a portfolio of

transformers, giving some insights into the effect

of a changed asset management strategy. An illus-

trative example of an analysis covering a portfolio

of transformers can be seen in Fig. 3 and Fig. 4.

These figures show how a possible distribution of

input variables yields an associated output from

the outage duration model. The dashed red line

in the latter figure show the proportion of perma-

nent faults which is expected to require ordering

a new transformer from the supplier due to lack

of a spare, which consequently lead to very long

outage durations.

4. Case study

4.1. Use case description

DP

T1

T2

Fig. 5. Use case system. Two transformers feed a
single delivery point.

The use case describes a stylized TSO decision

problem. A delivery point (DP) is connected to

the rest of the grid through two transformers, T1

and T2, which act as redundancies for each other.

A single line diagram of the system can be seen

in Fig. 5. The load at the delivery point consist

of households and small businesses in a local

community. A large industrial customer considers

establishing a plant at the DP. The industrial cus-

tomer cannot withstand prolonged and frequent

power interruptions without its production lines

being damaged or destroyed, and as such is highly

concerned with the reliability of supply at the DP.

Transformer T1 is halfway in its lifetime and

have an available spare in a central storage. Trans-

former T2 is approaching end of life and have no

available spare. The question is what strategy the

TSO should adopt with respect to planning for the

eventuality of a failure of T2, to accommodate

the reliability requirements of the potential new

industrial customer at the DP. The TSO has three

different alternatives for a spare T2 transformer:

Case 1: Warm-storage at the T2 site.

Case 2: Central storage, ready to install.

Case 3: Order from the supplier when needed.
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The aim of the analysis is to evaluate the risk

associated with the three scenarios. Interrupted

power at the DP will only happen when there

is a concurrent outage of both transformers, and

the consequence of the interruption can be de-

scribed by the corresponding interruption dura-

tion. Hence, the risk of each scenario is described

by the interruption frequencies and durations at

the DP. The risk evaluation could help the system

operator decide which spare strategy to choose.

A base outage duration model for each trans-

former is conditioned on a set of input variables.

Probabilistic best-guess estimates are entered into

the model for the timing, technical condition, and

accessibility variables. Only the spare-status of

the T2 transformer is altered when considering

the different cases. Outage duration samples are

generated from the proposed model, and a MCS

based reliability analysis is implemented for the

case study to capture and communicate the varia-

tion in these samples.

4.2. Monte Carlo Simulation

The MCS method implemented for the use case

employed is inspired by Solheim et al. (2018): A

failure rate for each transformer is picked from

a scaled beta distribution in each iteration, λ ←
SB ∼ (α, β, a, c), where a is the minimum, and

c is the maximum of the distribution. This step

reflects parameter uncertainty through a distribu-

tion of the expected annual failure rate with a

minimum and maximum ±20% of 0.0044, sym-

metrically distributed with α = β = 3.

Time series of failure probabilities covering ten

years is constructed for each transformer, where

the failure probability is considered constant. The

number of failure occurrences in each iteration

is picked from a binomial distribution, BI ∼
(n, p), where n = 8760 · 10, and p ≈ λ/8760.

Transformer failures are then allocated to a point

in time from a uniform distribution U ∼ (0, k),

where k is the number of time steps considered

in the analysis. An outage duration is then picked

for each failure using the model proposed in this

paper. Results are parsed to identify simultaneous

outage occurrences of both transformers, before

reliability indices are calculated.

Fig. 6. Interruption duration at the DP due to the
concurrent outage of both transformers.

4.3. Results and discussion

The different strategies result in vastly different

distributions of interruption duration, as seen in

Fig. 6. In case 1, the interruption duration in the

DP is predominantly decided by the activation

of the T2 spare which is kept in warm storage,

leading to a median interruption duration of a

little above two days. In case 3 the spare T2 must

be ordered from the supplier, and the associated

interruption duration is largely decided by the

mobilization, transport and installation of the T1

spare. In case 2, the outage of either transformer is

ended by acquiring a spare from a central storage.

Relying on expected values could conceal po-

tentially very long outage durations, making a

decision maker largely unaware of the risk of such

events. If the TSO finds that a partial load curtail-

ment in the DP for a period of up to six weeks is

acceptable, e.g. due to local energy production at

the low voltage level, both case 1 and 2 would be

acceptable when considering the expected outage

duration. However, by analysing the interruption

duration curve, it is estimated that 23 percent of

the interruptions in case 2 result in outages above

nine weeks, which would represent an unaccept-

able consequence. A similar concealment of po-

tential outcomes by the expected value could also

happen if there is a multimodal outage duration

distribution, as in Fig. 4: The expected value may

communicate an outage duration which almost

never occurs but is found somewhere between

different peaks in the distribution.

Fig. 7 shows a risk diagram depicting the fre-

quency and duration of interruptions at the DP
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for the different cases. A reduced outage duration

of T2 has a notable impact on the interruption

frequency at the DP, as seen when comparing

case 1 and 3, through a decreased probability of

overlapping outages of T1 and T2.

The TSO eventually chose case 1 as its pre-

ferred strategy, due to the prohibitively long out-

age durations represented by case 2 and 3.

Fig. 7. Risk diagram. Interruptions at the DP. Colored
lines show the 5th and 95th percentile of predicted inter-
ruption durations.

5. Conclusion

This paper has presented a transformer outage

duration model, which has applications to relia-

bility and risk assessments, supporting asset man-

agement decisions. The model takes into account

important information about the assets, such as the

technical condition and the availability of spares,

as well as other relevant information. Domain

experts informed the structure of the model, and

expert elicitation was used to compensate for lack

of empirical data when necessary. The BN struc-

ture and elicitation process helps incorporate un-

certainty into the analysis in a clear and struc-

tured manner, making modelling-, completeness-,

and parameter uncertainty explicit, and thus help

convey this uncertainty to the decision maker. The

relevance of the model as an asset management

decision support tool was exemplified in a case

study. The case study illustrated how the model

could assist a TSO planning and preparing for

an unwanted event in a risk-based manner and

contribute to informed management of the system

resilience.
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