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Hydraulic Structures and Flood Risk, Delft University of Technology, Delft, the Netherlands
E-mail: o.moralesnapoles@tudelft.nl

An accurate estimation of wind and wave variables is key for coastal and offshore applications. Recently, copulas
have gained popularity for modelling wind and waves multivariate dependence, since accounting for the hydrody-
namic relationships between them is needed to ensure reliable estimations of the required design values. In this
study, copula-based Bayesian networks (BNs) are explored as a tool to model extreme values of significant wave
height (Hs), wave period, wave direction, wind speed and wind direction. The model is applied to a case study
located in the Alboran sea, close to the Spanish coast, using ERA5 database. Extreme values of Hs are sampled
using Yearly Maxima and concomitant values of the missing variables are used. K-means clustering algorithm
is applied to separate the different wave components and a BN is built for each of them. The assumption of
modelling the dependence between the variables using Gaussian copulas and the structure of BNs are supported
with the d-calibratioson score. Fitted marginal distributions are introduced in the nodes of the BNs and their
performance is assessed using in-sample data and the coefficient of determination. The BN models proposed present
high performance with a low computational cost proving to be powerful tools for modelling the variables under
investigation. Future research will include different locations and databases.
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1. Introduction

Wind and waves are the main loads to consider

when assessing offshore energy production, plan-

ning coastal and offshore operations or design-

ing coastal and offshore structures, among oth-

ers. Wind speed directly affects the bollard pull

on mooring lines and the energy production of

offshore turbines (Kim et al., 2022). Wave height

is linked to wave energy, making higher waves

more harmful for structures (Mares-Nasarre et al.,

2022). Additionally, longer wave periods lead to

higher run-up and overtopping, and, thus, more

intense erosion rates on the beaches and dunes

which protect the shoreline (Di Luccio et al.,

2018). Moreover, a physical limitation exists,

called maximum steepness condition, which states

that too high waves break for given wave peri-

ods. Wind and waves do not approach structures

or shorelines perpendicularly, but with an an-

gle. This obliquity can significantly reduce wave

loads, wave overtopping and wave run-up when

compared to perpendicular waves (Mares-Nasarre

and van Gent, 2020).

Waves are generated by wind friction on the

sea surface. Thus, waves and wind arise from the

same meteorological system. The characteristics

of the resulting waves (height, period and direc-
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tion) are related to the wind speed and direction

in the generation area (sea waves). In addition,

waves may travel along large distances after be-

ing generated, and their characteristics become

less correlated to the local wind conditions (swell

waves). Consequently, neglecting the probabilistic

dependence between these variables may lead to

the underestimation of design loads. Therefore,

the multivariate uncertainty (probabilistic depen-

dence) between them needs to be accounted to

ensure reliable estimations.

In the last years, climate change has increased

the focus on the uncertainty and probabilistic de-

pendence of extreme climatic events (e.g. Esteves

et al., 2011; Pham et al., 2021). A popular ap-

proach for modelling the dependency of climatic

variables is based on copulas, which isolate the

one-dimensional marginals from the dependence

structure of random variables. Camus et al. (2019)

and Lucio et al. (2020) proposed the use of clus-

tering algorithms to increase the homogeneity in

each sample (cluster) and describe the dependence

structure within each cluster using Gaussian cop-

ulas. Other examples of the use of copula-based

models to describe wind and wave climate can

be found in Lin-Ye et al. (2016) or Jaeger and

Morales-Nápoles (2017).

Copula-based Bayesian Networks (BNs) are

probabilistic graphical models which represent

high-dimensional probability distribution func-

tions. BNs have been successfully used in dif-

ferent fields of civil engineering, such as to pre-

dict extreme river discharges (e.g. Paprotny and

Morales-Nápoles, 2017) or to model weight-in-

motion data (e.g. Mendoza-Lugo et al., 2022).

However, to the authors’ knowledge, BNs have

not been applied to describe wind and wave cli-

matic variables. Previous works have proven the

adequacy of copula-based models to characterize

the dependence between some wave or wind vari-

ables. Nevertheless, since all these variables are

relevant for design purposes, a model to describe

the dependence of all these variables simultane-

ously is needed. Here, the potential of copula-

based Bayesian Network models to characterize

the multivariate uncertainty of the extreme obser-

vations of wave and wind variables is explored. To

do so, a case study in the Alboran Sea is used, as

presented in Section 2. In Section 3, the modelling

approach is described. In Section 4, the model is

built and assessed, and its results are presented.

Finally, in Section 5, conclusions are drawn.

2. Case study

The present study proposes a copula-based BN to

characterize the dependence between extreme ob-

servations of wave and wind variables. A location

in the Alboran Sea (Spain) is used as a case study.

The Alboran sea is located in the South of Spain,

at the East of the Strait of Gibraltar. The location

of the case study has coordinates 36.4°N, -3.5°E.

Hourly measurements of aggregate wave and

wind variables from 1959 to 2021 (63 years)

are available in ERA5 database (Hersbach et al.,

2018). The following variables are selected:

• Significant wave height, Hs = H1/3 (m), the

average height of the highest third of sea and

swell waves.

• Mean wave period, Tm (s), the average time for

two consecutive wave crests to pass through a

fixed point.

• Mean wave direction, θH (°). North and east

correspond to θH=0°and θH=90°, respectively.

• Mean wind speed, Ws (m/s), the magnitude of

northward and eastward components of neutral

wind at 10 metres above the sea surface.

• Mean wind direction, θw (°). North and east

correspond to θw=0°and θw=90°, respectively.

For further reference on the definition of the

above variables see Hersbach et al. (2018).

3. Modelling approach

In this section, the methodology to model the ex-

treme observations of wave and wind storms using

clustering and BNs is presented. Hs is selected as

the dominant variable since it governs most of the

coastal and offshore processes relevant within the

civil engineering field. The methodology outline

is as follows.

(i) Extreme observations of Hs are sampled us-

ing Yearly Maxima. Concomitant values (val-

ues observed at the same time as the main
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observation) of the other four variables are

also sampled.

(ii) The main wave direction components are

identified using clustering. Independent anal-

ysis is performed for each component.

(iii) The structure of the BN is defined based on

the underlying physics and the correlation be-

tween the studied random variables. Correla-

tion is assessed using the Spearman’s corre-

lation coefficient, r (Spearman, 1904; Glasser

and Winter, 1961).

(iv) The performance of the bivariate Gaussian

copulas and the quantification of the BNs

are assessed using the d-calibration score

(Morales-Nápoles et al., 2013) and in-sample

simulations.

3.1. Clustering

The wave regime at a given location is usually a

combination of different wave components caused

by different drivers. Thus, each component needs

to be identified and analyzed independently. Here,

the k-means algorithm is applied along the values

of θH . K-means is a simple unsupervised classi-

fication algorithm from signal processing science

widely used in climate modelling (e.g. Camus

et al., 2019; Lucio et al., 2020). The algorithm

minimizes the intra-cluster variation defined as the

sum of squared Euclidean distances between items

and the centroid of the cluster. The total within-

cluster variation, TV , is then the sum of the intra-

cluster variation of each cluster.

TV =

K∑

k=1

W (Ck) =

K∑

k=1

∑

xi∈Ck

(xi − μk)
2 (1)

where W (Ck) is the intra-cluster variation of

cluster k, xi is a data point in Ck and μk is the

mean value of the points assigned to the cluster

Ck.

Therefore, a suitable value for the hyper-

parameter k, representing the number of clusters,

must be selected for the k-means algorithm. Here,

k = 1, 2, ..., 5 are considered, and the Gap statistic

is used to select the optimal number of clusters

(Tibshirani et al., 2001). The Gap statistic assesses

the goodness of fit of the clustering measure com-

paring (log) TV with its expected value for a ref-

erence distribution without an obvious clustering.

This reference distribution is built by generating

each reference feature uniformly over the range

of the observed values for that feature. The Gap

statistic is defined as

Gapn(k) = E∗
n[log(TV )∗]− log(TV ) (2)

where E∗
n[log(TV )∗] is the expected value of

log(TV ) for a reference distribution without a

clear clustering with sample size n (log(TV )∗).

E∗
n[log(TV )∗] is then calculated as the average

log(Wk)
∗ from B resamples generated by boot-

strapping from the reference distribution. Thus,

the higher the Gap statistic, the better. The optimal

k is defined as Gap(k) ≥ Gap(k+1)−sk+1 being

sk+1 the standard error of the output, calculated as

sk = sd(k)(1 + 1/B)0.5 (3)

where sd(k) is the standard deviation of

log(TV )∗ in the B bootstrap resamples.

This analysis is performed using the R-library

Clusters (Maechler et al., 2022).

3.2. Copula model

In this study, bivariate copulas are used to model

the probabilistic dependence between variables.

Bivariate copulas, or just copulas, are joint dis-

tributions with uniform marginal distributions in

[0, 1]. According to Sklar (1959), any multivariate

joint distribution can be described in terms of a set

of univariate marginal distributions and a copula

that models the dependence between the variables.

For the bivariate case, a copula is defined as

HXY (x, y) = C{FX(x), GY (y)} (4)

where HXY (x, y) for (x, y) ∈ R
2 is a joint

distribution with marginals FX(x) and GY (y) in

[0, 1] and a copula in the unit square I2 = ([0, 1]×
[0, 1]), being Eq. (4) satisfied for all (x, y) ∈ R

2.

In this study, Gaussian copulas, suitable to

model variables without strong tail dependence,

are considered. The hypothesis of no significant
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tail dependence between the studied variables is

investigated by means of the d-calibration score

in Section 4.4.

3.3. Copula-based Bayesian Networks

Bayesian Networks (Pearl, 2013) are high-

dimensional probability distribution functions

composed by a Directed Acyclic Graph (DAG)

consisting of a set of nodes and a set of arcs.

Each node of a Bayesian Network represents a

random variable, while each arc connecting two

nodes indicates probabilistic dependence. Thus,

a Bayesian Network encodes the joint probabil-

ity density on a set of variables by specifying

conditional probability functions of each variable

(child) given its direct preceding variables (par-

ents). In this study, copula-based Bayesian Net-

works (BNs) are used, where parametric univari-

ate distributions are assigned to the nodes and bi-

variate copulas are applied to describe the depen-

dence between each pair of random variables. In

this study, Gaussian copulas are used since there

is previous evidence of their feasibility to model

metocean variables (Camus et al., 2019; Lucio

et al., 2020) and present computational advantages

(Mendoza-Lugo et al., 2022). Further discussion

on this can be found in Section 4.4.

BNs are implemented using the Python library

BANSHEE (Paprotny et al., 2020; Koot et al.,

2023).

4. Building the model

4.1. Identified extreme wave storms

Following the procedure indicated in Section 3, 63

extreme values of Hs are identified in the database

described in Section 2, and concomitant values

of the other 4 random variables are selected. The

overview of the sampled extreme events is pre-

sented in Fig. 1.

In Fig. 1, two clear wave and wind components

are identified: (1) west component (μ = 250.1°),

and (2) east component (μ = 88.3°). This indi-

cates that there are wave storms caused by dif-

ferent drivers and fetches. Applying the k-means

algorithm described in Section 3.1, the wave sys-

tems are systematically separated. 33 observations

Fig. 1. Overview of sampled extreme wind and wave
storms

correspond to the west component and 30 obser-

vations correspond to the east component. Fig. 2

presents the data for the west component.

Fig. 2. Overview of the west component (cluster μ =
250.1 ◦)

4.2. Empirical correlation matrix

The Spearman’s correlation coefficient, r, is used

to assess the dependence between the random

variables for both wave components. r ∈ [−1, 1],
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where r =1 and -1 represent perfect positive and

negative monotonic dependence, respectively, is

defined as

r =
Cov[R(X), R(Y )]

σR(X)σR(Y )
(5)

where Cov[R(X), R(Y )] is the covariance of

the ranked variables, and σR(X) and σR(Y ) are

their standard deviations of the ranked variables.

Results for west and east components are shown

in Tables 1 and 2, respectively.

Table 1. Empirical rank correlation matrix for west

component.

r Hs Tm θH Ws θw

Hs 1.00 0.981 -0.098 0.938 -0.027
Tm 1.00 -0.175 0.901 -0.050
θH 1.00 0.065 0.599
Ws 1.00 -0.012
θw 1.00

Table 2. Empirical rank correlation matrix for east

component.

r Hs Tm θH Ws θw

Hs 1.00 0.885 -0.220 0.811 -0.424
Tm 1.00 -0.067 0.552 -0.159
θH 1.00 -0.446 0.768
Ws 1.00 -0.654
θw 1.00

As shown in Table 1, strong correlations are

observed between the pairs Hs − Tm, Hs − Ws

and Ws − Tm for the west component. Similarly,

the east component (Table 2) presents strong cor-

relations between the pairs Hs−Tm and Hs−Ws.

However, a significantly lower correlation in the

pair Ws − Tm is obtained (0.901 vs. 0.551). This

may indicate that the west component presents a

more relevant contribution of local wind genera-

tion (sea waves), although it is still dominated by

swell waves.

4.3. Bayesian Network structure

In this section, the DAG of the BN is defined

attending to two criteria: (1) it must represent the

underlying physics of wind and wave generation,

and (2) the rank correlation matrix of the BN

should approximate the empirical rank correlation

matrix.

Wind is produced due to differences in temper-

ature and air pressure in the atmosphere and is

the main driver of wave generation. Wind blows

along the sea surface, curling it and creating

waves. These locally generated waves are called

sea waves. Sea waves can propagate out of the

generation zone, not being sustained by wind any-

more, reaching distant locations. These are called

swell waves. Therefore, the wave climate at a

given location is the result of a mixture of sea

and swell waves, and a relationship between the

observations of wind and wave variables exists.

For instance, the longer the distance along which

the wind blows and the greater the wind speed, the

higher the generated waves. This causal relation-

ship is translated into the BN structure defining

the wind variables (Ws and θw) as parents of

wave variables. Figure 3 presents the BN structure

defined in this study.
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Fig. 3. Structure of the copula-based Bayesian Net-
work defined in this study

4.4. Model validation

Two hypotheses must be validated when building

a BN: (1) the dependence between the studied

variables is well described by Gaussian copulas,

and (2) the BN structure sufficiently represents the

dependence structure. D-calibration score is used

to this end, as mentioned in Section 3.

The d-calibration score (Morales-Nápoles et al.,

2013; Morales-Nápoles et al., 2014) provides a
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measure of ”how distant” the elements of two cor-

relation matrices are. This score is 1 if matrices are

equal and becomes closer to 0 as matrices differ

from each other element-wise. The d-calibration

score is given by

d(Σ1,Σ2) = 1−
√

1− η(Σ1,Σ2) (6)

where Σ1 and Σ2 are correlation matrices and

η(Σ1,Σ2) is the Hellinger distance calculated (un-

der the Gaussian copula assumption the term con-

taining the mean vectors is neglected) as

η(Σ1,Σ2) =
det(Σ1)

1/4det(Σ2)
1/4

det
(
1
2Σ1 +

1
2Σ2

)1/2 (7)

In order to validate the use of Gaussian bivariate

copulas, the Empirical Rank Correlation matrices

(ERC) are compared to the correlation matrices

calculated from a saturated BN (NRC). Saturated

BNs (SBNs) are those where all random variables

are connected to each other. The validation of the

BN structure in Figure 3 is done using a non-

parametric Bayesian Network (NPBN) for each

wave component. In this work, NPBNs refer to

those where the random variables in the nodes are

described using the empirical distribution func-

tions. Following studies in the literature such as

Mendoza-Lugo et al. (2022, 2019), the NRCs

are compared with the rank correlation matrices

of the NPBN (BNRC). Additionally, here, BN-

RCs are compared with ERCs. The calculated d-

calibration scores range between 0.68 and 0.89,

showing that both Gaussian copulas and the pro-

posed BN structure are suitable to describe the

dependence structure of the empirical data.

4.5. Marginal distributions

In this study, one-dimensional marginal distri-

butions are fitted to each studied random vari-

able. When dealing with extremes, extrapolation

is needed to calculate return levels for very low

exceedance probabilities, such as 10−6. This ex-

trapolation requires using parametric marginals.

Thus, Hs is fitted using a Generalized Extreme

Value distribution (GEV), since it was sampled

using Block Maxima. To fit the distribution of

the concomitant observations, Gamma, Normal

(Norm.) and Lognormal (Logn.) distributions are

considered, and the distribution providing the best

fit in terms of Loglikelihood is selected. Fig. 4

presents an example of Hs fitting for the west

component, while Table 3 shows a summary of the

selected marginal distributions.
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Fig. 4. Generalized Extreme Value marginal distribu-
tion, GEV, for Hs of west component.

Table 3. Summary of fitted marginal distri-

butions.

Variable Direct. Distr. μ σ ξ

Hs West GEV 3.40 0.47 0.02
East GEV 3.33 0.39 0.27

Tm West Logn. 1.95 0.06
East Logn. 1.98 0.08

θH West Logn. 5.52 0.01
East Norm. 88.26 3.27

Ws West Logn. 2.81 0.09
East Logn. 2.75 0.11

θw West Logn. 5.57 0.02
East Logn. 4.40 0.07

As shown in Table 3, the marginal distributions

for Tm and Ws are similar for both wave com-

ponents. However, smaller predictions for Tm and

higher predictions of Ws are given for the west

component. These results reinforce the observa-
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tion that the east component is more dominated by

swell waves (longer periods and less local wind),

while the west component is more driven by local

wind generation (sea waves). The fitted univariate

distributions are applied to the nodes of the BN.

4.6. Performance assessment

The inferences that may be expected from the two

developed copula-based BNs are assessed here. To

do so, an in-sample procedure is applied. That is,

BNs are conditionalized on the measured values

of Tm, θH , Ws and θw, and 1,000 samples of

Hs|Tm, θH ,Ws, θw are obtained for each case of

conditional values. Based on those 1,000 samples

of Hs|Tm, θH ,Ws, θw, the mean and the 5% and

95% percentiles of the conditional distribution are

obtained. Figure 5 compares the measured Hs

with the mean and the 5% and 95% percentiles

of the predictions given by the BN models.

Fig. 5. Comparison between measured and estimated
Hs using the BN models.

In-sample estimation of Hs < 5m presents a

very good agreement with the measured data, as

well as a low variability. However, as Hs grows

the BNs start to overestimate Hs, and the variabil-

ity of the estimation increases. The coefficient of

determination, R2, is used to evaluate the perfor-

mance of the mean predicted value for each wave

component. 0 ≤ R2 ≤ 1 estimates the percentage

of the variance explained by the model and is

defined in Eq. (8).

R2 = 1−
1

Nobs

∑Nobs

i=1 (oi − ei)
2

1
Nobs

∑Nobs

i=1 (oi − o)2
(8)

where Nobs is the number of observations, oi
and ei are the observations and estimations, re-

spectively, and o is the mean of the observations.

Overall, the developed BNs are a satisfactory

model for the purpose under investigation, espe-

cially for the west wave component.

5. Conclusions

In this study, the suitability of copula-based

Bayesian Networks (BNs) to model extreme wind

and wave climatic variables is studied. A loca-

tion in the Alboran sea (south Spain) from ERA5

database was used as a case study. Yearly max-

ima is used to sample the extreme observations

of wave height, and concomitant values of the

remaining variables are taken. The k-means clus-

tering algorithm is applied to identify the different

wave components, and a BN is built for each of

them. The use of the Gaussian copulas and the

structure of the BN are validated using the d-

calibration score, obtaining a good data agreement

in statistical terms. Finally, fitted marginal distri-

butions are introduced in the nodes of the BNs,

and their performance is assessed using in-sample

data and R2. The developed BNs may be regarded

as a good model with R2 = 0.28 and R2 = 0.73

for the east and west components, respectively.

The results show that BNs are suitable for estimat-

ing extreme wind and wave climatic variables and,

thus, further investigation with different locations

and databases is recommended. Future research

lines will also focus on introducing techniques to

maximize the sampled maxima and explore the

use of vine copulas to better account for possible

asymmetries in the joint distributions.
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A. Horányi, J. M. Sabater, J. Nicolas, C. Peubey,
R. Radu, I. Rozum, D. Schepers, A. Simmons,
C. Soci, D. Dee, and J.-N. Thépaut (2018). Era5
hourly data on single levels from 1959 to present.
Technical report, Copernicus Climate Change Ser-
vice (C3S), Climate Data Store (CDS). Accessed 1st
Sept. 2022.

Jaeger, W. S. and O. Morales-Nápoles (2017). A vine-
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