
Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

Edited byMário P. Brito, Terje Aven, Piero Baraldi, Marko Čepin and Enrico Zio
©2023 ESREL2023 Organizers. Published by Research Publishing, Singapore.
doi: 10.3850/978-981-18-8071-1_P101-cd

Constructing health indicators for systems with few failure instances using unsuper-

vised learning

Ingeborg de Pater

Faculty of Aerospace Engineering, Delft University of Technology, The Netherlands.
E-mail: i.i.depater@tudelft.nl

Mihaela Mitici

Faculty of Science, Utrecht University, The Netherlands.
E-mail: m.a.mitici@uu.nl

Health indicators are crucial to assess the health of complex systems. In recent years, several studies have developed
data-driven health indicators using supervised learning methods. However, due to preventive maintenance, there
are often not enough failure instances to train a supervised learning model, i.e., the data is unlabelled with an
unknown actual Remaining Useful Life (RUL). In this paper, we therefore propose an unsupervised learning model
to construct a health indicator for an aircraft system. The considered system is operated under highly-varying
operating conditions. We train a Convolutional Neural Network (CNN) to predict the sensor measurements from
the operating conditions. We train this neural network solely with the sensor measurements of just-installed, non-
degraded systems. The CNN therefore learns the normal range of the sensor measurements, given the operating
conditions, for non-degraded systems only. For a degraded system, the predicted sensor measurements deviate from
the actual sensor measurements. Based on the prediction errors, we construct a health indicator for the aircraft
system. We apply this approach to develop a health indicator for the aircraft turbofan engines of dataset DS02 and
DS06 of N-CMAPSS. The resulting health indicators have a high prognosability of 0.91 for DS02 and of 0.83 for
DS06, a mean trendability of 0.86 for DS02 and of 0.87 for DS06, and a mean monotonicity of 0.31 for DS02 and
of 0.33 for DS06, and can thus be used to make a reliable assessment of the system’s health.

Keywords: Health indicator, few failure instances, unsupervised learning, varying operating conditions, high-
frequency data, Convolutional Neural Network

1. Introduction

In the field of Prognostics and Health Man-

agement (PHM), health indicators represent the

health of, or degradation in, a system. Health indi-

cators are used in various PHM applications, such

as fault detection, the identification of changes

in the degradation trend and for predicting the

Remaining Useful Life (RUL) of systems.

Most studies employ physics-based models to

develop health indicators. For instance, the Paris

law for crack propagation is often combined with

Kalman/particle filters to model the health of air-

frame panels (Yiwei et al. (2017)), while features

from the time-domain (such as root mean square)

and frequency domain (such as kurtosis) are used

to evaluate the health of rolling element bear-

ings from vibration signals (Gupta and Pradhan

(2017)). Unfortunately, pure physics-based mod-

els are not available for many complex systems

(Chao et al. (2022)). In this paper, we therefore

develop a data-driven method to construct a health

indicator instead.

In recent years, the focus has thus shifted to the

development of data-driven models to construct

a health indicator. For instance, in Wang et al.

(2008); Khelif et al. (2014), a health indicator

is obtained by a linear regression of the health

of a system on the sensor measurements. This

approach requires many labeled data-monitoring

samples, i.e., data samples for which the true RUL

or the true health of the system is known. Most

expensive or safety-critical systems, however, are

preventively maintained or replaced (far) before

failure. Moreover, assessing the true health of a

system is usually expensive or even impossible

(Fink et al. (2020)). Most data samples com-
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ing from expensive or safety-critical systems are

therefore unlabelled, i.e., the true RUL or the true

health state is unknown. Also in this paper, we

consider a problem where only a limited number

of failure instances (and corresponding labelled

data samples) are available.

An unsupervised or semi-supervised learning

method is often used to create a health indicator

when few failure instances are available. Specifi-

cally, a model is trained with the unlabelled data

samples of non-degraded systems only to learn the

normal range of sensor measurements. A health

indicator is then constructed by detecting devia-

tions from this normal range (Fink et al. (2020)).

The unsupervised learning model is often an au-

toencoder, which only learns to reconstruct the

sensor measurements of non-degraded systems. In

Ye and Yu (2021); de Pater and Mitici (2023),

the reconstruction errors of such an autoencoder

are used to construct a health indicator, while in

Zhai et al. (2021); Fu et al. (2021), the embedding

of the autoencoder (i.e., the hidden state with the

smallest dimension) is used to construct a health

indicator instead.

In this paper, we also train an unsupervised

learning model with unlabelled data samples to

learn the normal range of sensor measurements.

However, we consider an aircraft system that is

operated under highly varying operating condi-

tions. The normal range of the sensor measure-

ments depends on these operating conditions. In

contrast to the other papers, we therefore do not

use an autoencoder. Instead, we train a Convo-

lutional Neural Network (CNN) to predict the

sensor measurements at a certain time from the

operating conditions at that time. We train this

CNN solely with measurement samples coming

from non- or only slightly degraded systems. We

then use the prediction error of the CNN to detect

deviations from the normal system behaviour due

to increasing degradation, to select relevant sen-

sors for detecting degradation and to construct a

health indicator for the aircraft system.

We apply this methodology to create a health

indicator for the aircraft turbofan engines of

dataset DS02 and DS06 in the N-CMAPSS dataset

(Arias Chao et al. (2021)). The resulting health

indicators have a prognosability of 0.91 for DS02

and of 0.83 for DS06, a mean trendability of 0.86

for DS02 and of 0.87 for DS06, and a mean mono-

tonicity of 0.31 for DS02 and of 0.33 for DS06.

We thus obtain good results with a relatively

simple and easily explainable method. A similar

approach is used in Lövberg (2021) to preprocess

the sensor data of N-CMAPSS before using it as

input to a neural network that predicts the RUL.

However, in this paper, it is merely used as a

preprocessing technique: No sensors are selected

and no health indicator is created.

In the rest of this paper, we first discuss the

methodology in Section 2, and then present the

results for the N-CMAPSS dataset in Section 3.

We then provide conclusions and suggestions for

further research in Section 4.

2. Methodology: health indicator
construction for an aircraft system
with limited failure instances

2.1. CNN for predicting the sensor
measurements

Let Ye,f = [Ye,f
1 ,Ye,f

2 , . . . ,Ye,f
Ne,f ] denote

all multi-sensor measurements for an aircraft

system e collected during a flight f , with

Ne,f the number of multi-sensor measurements

collected during this flight. Here, Ye,f
i =

[ye,f,1i , ye,f,2i , . . . , ye,f,mi ], with ye,f,ji the mea-

surement of sensor j of time-step i of flight f and

system e. Last, m denotes the number of sensors.

Similar, let Xe,f = [Xe,f
1 ,Xe,f

2 , . . . ,Xe,f
Ne,f ]

be the corresponding measurements of the oper-

ating conditions of flight f of system e. Here,

Xe,f
i = [xe,f,1

i , xe,f,2
i , . . . , xe,f,o

i ], with xe,f,j
i the

measurement of operating condition j of time-

step i of flight f of system e. Here, o denotes the

number of measured operating conditions.

We input the data samples in a CNN. All

data samples therefore must have equal dimen-

sions. In contrast, the length Ne,f varies per

flight f and per system e. For each flight

f of system e, we therefore create Ne,f −
n data samples of length n from Ye,f . Let

Ỹe,f
i = [Ye,f

i ,Ye,f
i+1, . . . ,Y

e,f
i+n−1] denote the

ith data sample containing n multi-sensor mea-

surements from flight f of system e, with i ∈
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Fig. 1.: Schematic overview of the CNN.

{1, 2, . . . , Ne,f − n + 1}. Similar, we create the

corresponding ith sample with the operating con-

ditions of flight f of system e, denoted by X̃e,f
i =

[Xe,f
i ,Xe,f

i+1, . . . ,X
e,f
i+n−1]. These data samples

are overlapping: The multi-sensor measurements

Ye,f
g or operating conditions Xe,f

g of one time-

step g may be included in multiple samples.

The goal of the CNN is to predict the multi-

sensor measurements Ỹe,f
i using the operating

conditions X̃e,f
i as input. The considered CNN

first consists of three convolutional layers. Each

convolutional layer has ten filters of size 10 × o,

and a stride of one. We then have a fourth con-

volutional layer with one filter of size 10 × o,

that combines all ten feature maps into one single

feature map. This single feature map is used as

input to three fully connected layers, where the

first two layers each have 500 and s nodes respec-

tively. The last layer has n · m nodes. This layer

outputs the predicted sensor measurements Ŷe,f
i .

We apply after each layer, except the last layer,

the ReLU activation function. For the last layer,

we consider the linear activation function instead.

Moreover, we initialize the weights of each layer

with Kaiming normal initialization. A schematic

overview of the considered CNN is in Figure 1.

The loss function of the CNN is the mean

squared prediction error between the actual sen-

sor measurements Ỹe,f
i and the predicted sensor

measurements Ŷe,f
i . We regard this as an unsuper-

vised learning approach, since we do not need any

information on the RUL or health of the system to

train the CNN.

2.2. Sensor selection for the health
indicator

The degradation of a system influences the mea-

surements of some sensors more than others. To

construct the health indicator, we therefore only

select the sensors for which the degradation is

clearly present in the prediction errors over time.

Specifically, let εe,f,ji be the squared prediction

error for sensor j, sample i, engine e and flight

f :

εe,f,ji =
i+n−1∑
g=i

(
ŷe,f,ji,g − ye,f,ji,g

)2

, (1)

where ŷe,f,ji,g denotes the predicted measurement

of sensor j for flight f , system e and time-step

g, in sample i. Let Le,j
f be the mean squared

prediction error (MSE) for all data samples Ỹe,f
i

(i ∈ {1, 2, . . . , Ne,f − n+ 1}) for sensor j and a

system e during a flight f :

Le,j
f =

Ne,f−n+1∑
i=1

εe,f,ji

n · (Ne,f − n+ 1)
. (2)

Note that eq. (2) is more complicated than the

“standard” expression for the MSE, since the data

samples are overlapping. For each sensor j, we

have the time-series of the mean error Le,j =[
Le,j
1 ,Le,j

2 , . . . ,Le,j
F e

]
. Here, F e denotes the num-

ber of flights of a system e.

Let E be the set with all training systems for

which sensor measurements are available from the
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moment of installation until failure. For each sen-

sor j, we calculate the mean trendability T j using

the Spearman correlation coefficient between the

time-series Le,j and the flights {1, 2, . . . , F e} for

all systems e ∈ E (Lei et al. (2018)):

T j =
1

|E|
∑
e∈E

T e,j , (3)

T e,j =

F e
F e∑
f=1

r(Le,j
f )f −

F e∑
f=1

r(Le,j
f )

F e∑
f=1

f√√√√F e
F e∑
f=1

(
r(Le,j

f )
)2

−
(

F e∑
f=1

r(Le,j
f )

)2

·

√√√√F e
F e∑
f=1

f2 −
(

F e∑
f=1

f

)2

,

where r(Le,j
f ), f ∈ {1, 2, . . . , F e} is the rank

sequence of the time-series Le,j . The trendability

T e,j is between minus one and one. The corre-

lation between the operating time and the health

indicator is stronger when the trendability is closer

to one or minus one. We also calculate for each

sensor j the prognosability Pj (also called consis-

tency) over all systems e ∈ E (Lei et al. (2018)):

Pj = exp

⎡⎣ −STD(Le,j
F e , e ∈ E)

1
|E|

∑
e∈E

∣∣∣Le,j
1 − Le,j

F e

∣∣∣
⎤⎦ , (4)

where STD(Le,j
F e , e ∈ E) denotes the standard

deviation of the last values Le,j
F e of the time-series

Le,j over all e ∈ E. The prognosability is between

zero and one. The health indicators of the different

engines are more similar when the prognosability

is closer to one.

We only select the sensors j for which the

mean trendability T j and the prognosability Pj

are above 0.75. Let J be the set with selected sen-

sors. We then calculate the final health indicator

he = [he
1, h

e
2, . . . , h

e
F e ] for a system e, with:

he
i =

∑
j∈J

Le,j
i . (5)

3. Results

3.1. Description of the data

We apply the methodology in Section 2 to the

aircraft turbofan engines of dataset DS02 of the N-

CMAPSS dataset (Arias Chao et al. (2021)).This

simulated dataset has a training set of six engines

(engines 2, 5, 10, 16, 18 and 20) and a test set

of three engines (engine 11, 14 and 15). For each

engine in both the training and test set, all sensor

measurements and operating conditions from the

first flight after installation until the failure are

available.

The dataset contains o=4 operating conditions,

namely the altitude of the aircraft, the flight Mach

number, the throttle-resolver angle and the total

temperature at the fan inlet. Moreover, we con-

sider the measurements of only the m = 14 phys-

ical sensors around different parts of the engine

(xs).The sensor measurements of the training en-

gines are highly correlated with the measurements

of at least one operating condition. For instance,

the total pressure at the fan inlet (P2) has a cor-

relation of 0.99 with the total temperature at the

fan inlet. The total temperature at the LPT outlet

(T50) has the lowest absolute correlation with the

operating conditions. But even for this sensor, the

highest absolute correlation, with the total tem-

perature at the fan inlet, is still 0.54. This high

correlation shows that the sensor measurements

can be predicted using the operating conditions.

We select dataset DS02 for two reasons. First,

dataset DS02 contains two distinct failure modes.

The failure mode of training engines 2, 5 and

10 affects only the efficiency of the HPT (High

Pressure Turbine), while the failure mode of the

other training engines and the three test engines

also affects the efficiency and flow of the LPT

(Low Pressure Turbine). We use dataset DS02

to analyse the robustness of our approach to the

presence of multiple failure modes in the training

set. Second, all training engines and test engine 11

belong to flight class 3 (long flights), while test en-

gine 14 belongs to flight class 1 (short flights) and

test engine 15 belongs to flight class 2 (medium

long flights). Since all training engines have the

same flight class, we cannot incorporate this in the

neural network. However, we use dataset DS02 to

analyse the robustness of our approach to chang-

ing circumstances from the training to the test set.
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3.1.1. Data preprocessing

The operating conditions and sensor measure-

ments are simulated at a high-frequency, with one

measurement per sensor/operating condition per

second. This gives 4311 to 18169 measurements

per sensor per flight for the training engines. To

reduce the training time of the CNN, we aggregate

the measurements by taking the mean measure-

ment per ten seconds.

The lifetime of each engine in the N-CMAPSS

dataset is split in two parts. When the engine is

just installed, the engine is in the normal degrada-

tion phase and the degradation is simulated using

a linear model. After some time (16 to 17 flights

for the training engines in DS02), the engine tran-

sitions to the abnormal degradation phase, and

the degradation is modelled using an exponential

model instead. However, we assume that it is un-

known when this accelerated degradation phase

starts for the training engines. Instead, we assume

that the training engines are non- or only slightly

degraded during the first ten flights. We thus use

the first ten flights from each training engine to

train the CNN. This mimics a real-life situation,

in which it is challenging to determine, even in

hindsight, when the degradation accelerates.

Last, we normalize the measurements for each

sensor and each operating condition between mi-

nus one and one using min-max normalization.

Here, the minimum and maximum measurements

are calculated with the measurements of the first

ten flights of all training engines.

3.2. Training of the CNN

We thus use the first ten flights of each training

engine to train the CNN. Here, we consider a

sample length of n = 50. For each training engine,

we randomly select two flights (20%) of the first

ten flights for validation. All samples from these

validation flights are put in the validation set. The

samples of the remaining flights are used for the

training set. This gives 27743 training samples

and 6685 validation samples. We train the CNN

with the Adam optimizer with a learning rate of

0.001. We then perform a grid search to determine

the number of epochs (50 or 100) and the number

of nodes in the second fully connected layer s (500

(a) Sensor T50

(b) Sensor P2

Fig. 2.: The mean prediction error Le,j
f per flight

f for engine e = 2, sensors j = T50 and j = P2.

or 1000). The lowest validation loss is obtained

with 100 epochs and s = 500, after 96 epochs.

At this point, the mean squared prediction error

(ŷe,f,ji,g −ye,f,ji,g )2 for the validation set is only 6.0 ·
10−5 per single, normalized measurement of one

sensor. We thus succeed very well in predicting

the sensor measurements of non- or only slightly

degraded engines from the operating conditions.

In the rest of this study, we use the CNN with these

weights of epoch 96.

Figure 2 shows the mean prediction error Le,j

over time for training engine 2 and for sensor

j = P2 and j = T50. For sensor T50, the mean

prediction error increases over time for engine 2.

This is reflected by the high Spearman trendability

of 0.85. In contrast, the mean prediction error of

sensor P2 only shows random fluctuations, and no

trend over time. The trendability with this sensor

and engine is indeed only -0.06. Including the

prediction errors of sensor P2 in our final health

indicator thus only introduces additional noise.

This shows the importance of performing a sensor

selection prior to making the health indicator.

Table 1 shows the two out of 14 sensors that

are selected to make the final health indicator, i.e.,



3071Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

(a) Test engine 11, DS02 (b) Test engine 14, DS02 (c) Test engine 15, DS02

Fig. 3.: Health indicator for the three test engines of DS02.

Table 1.: Table with all selected sensors j ∈ J for

the health indicator construction for DS02.

Sensor j Description T j Pj

T48 Total temperature at

HPT outlet

0.86 0.91

T50 Total temperature at

LPT outlet

0.92 0.80

all sensors for which the mean trendability T j

and the prognosability Pj exceed the threshold

of 0.75 for the training engines. The two selected

sensors measure the temperature at the HPT and

LPT outlet. This is in line with the fault mode of

the engines.

3.3. Health indicators

Figure 3 shows the health indicator for all three

test engines. The health indicators are roughly

flat in the normal degradation phase, with a value

between 0.000 and 0.002. After this phase, the

health indicator exponentially increases, until the

engines fail when the health indicator is between

0.034 (engine 11) and 0.042 (engine 15).

To quantitatively evaluate the health indicators,

we calculate for each test engine e the trendability

T e (see eq. 3) and the monotonicityMe (de Pater

and Mitici (2023)):

Me =

∣∣∣∑F e−1
f=1 I

(
he
f+1 − hf

)
− I

(
he
f − he

f+1

)∣∣∣
F e − 1

,

I(x) =

{
1 x > 0

0 x ≤ 0
. (6)

Last, we calculate the prognosability P over all

three test engines (see eq. 4).

Table 2.: The trendability T e, monotonicity Me

and prognosability P for the test engines, DS02.

Engine e Trend. T e Mono.Me Prog. P
11 0.83 0.31 -

14 0.83 0.31 -

15 0.93 0.30 -

Mean/all 0.86 0.31 0.91

Table 2 shows these three metrics for the three

test engines. All engines have a high trendability

between 0.83 and 0.93. The correlation between

the operating time and health indicator is thus

large, i.e., the health indicator increases as the en-

gine degrades over time. Also the prognosability

of 0.91 is high. The engines thus have a roughly

equal initial and final health indicator value. Last,

the monotonicity of the engines is 0.30 or 0.31,

due to small fluctuations in the health indicators.

The high trendability and prognosability enable

the employment of these health indicators in RUL

prognostic models or for fault detection.

3.4. Robustness of methodology - dataset
DS06 of N-CMAPSS

To verify the robustness of our approach, we also

use the proposed methodology on dataset DS06 of

N-CMAPSS. This dataset consists of six training

engines (labelled as 1, 2, 3, 4, 5 and 6) and 4 test

engines (labelled as 7, 8, 9 and 10). These engines

have the same names as some engines in DS02,

but they are different engines with different sensor

data. All engines in DS06 degrade according to

the same failure mode, that affects the efficiency

and flow of the Low Pressure Compressor (LPC)
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(a) Test engine 7, DS06 (b) Test engine 8, DS06

(c) Test engine 9, DS06 (d) Test engine 10, DS06

Fig. 4.: Health indicator for the four test engines of DS06.

and the High Pressure Compressor (HPC). We

select this dataset to verify if our approach also

works with another failure mode. Moreover, we

want to analyse if we select other sensors when

the engines degrade according to another failure

mode, that affects other parts of the engine.

Table 3.: Table with all selected sensors j ∈ J for

the health indicator construction for DS06.

Sensor j Description T j Pj

T30 Total temperature at

HPC outlet

0.88 0.89

T48 Total temperature at

HPT outlet

0.89 0.87

T50 Total temperature at

LPT outlet

0.92 0.88

In contrast with dataset DS02, which has only

one flight class in the training set, in dataset DS06

all three flight classes are present in both the train-

ing and test set. We therefore add the flight class

of an engine as the input to the neural network.

We do this by one-hot encoding the flight classes,

i.e., we add three binary variables to the input, one

for each flight class. Each binary variable is one if

the engine belongs to that flight class, and zero

otherwise. Beside including the flight classes, we

do not change the data preprocessing, the consid-

ered CNN or the training process in any other way.

The lowest validation loss is now obtained after

90 epochs, with a mean squared prediction error

of 1.1 · 10−4 per single, normalized measurement

of one sensor in the validation set.

Table 4.: The trendability T e, monotonicity Me

and prognosability P for the test engines, DS06.

Engine e Trend. T e Mono.Me Prog. P
7 0.84 0.27 -

8 0.85 0.22 -

9 0.80 0.44 -

10 0.90 0.38 -

Mean/all 0.87 0.33 0.83

Table 3 shows the sensors that are selected to

make the final health indicator for dataset DS06.

Beside sensor T48 and T50, we now also select

sensor T30. This sensor is located at the HPC of

the engine, which is in line with the failure mode.

Figure 4 shows the obtained health indicators

of the test engines of DS06, and Table 4 shows the

corresponding metrics. Just as with dataset DS02,

the health indicators have a high trendability and
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prognosability, and a slightly lower monotonicity.

This shows the robustness of our approach to other

failure modes.

4. Conclusions

In this paper, we construct a health indicator for

aircraft engines. We first develop a CNN that

predicts the sensor measurements from the oper-

ating conditions. This CNN is trained to predict

the sensor measurement from non- or slightly de-

graded engines only. The sensor measurements

of a degraded engine deviate from the sensor

measurements of a non-degraded engine (given

the operating conditions). The prediction error of

the CNN quantifies this deviation, and is used to

create a health indicator. We apply this approach

to the aircraft turbofan engines in dataset DS02

and DS06 the N-CMAPSS dataset. The resulting

health indicators have a mean trendability of 0.86

for DS02 and of 0.87 for DS06, a prognosability

of 0.91 for DS02 and of 0.83 for DS06, and a

mean monotonicity of 0.31 for DS02 and of 0.33

for DS03.

In this paper, we implicitly assume that all

different ranges of possible operating conditions

and all possible fault modes are present in the

training set. Future studies could therefore an-

alyze how well our approach generalizes when

the operating conditions and fault modes differ

between the training and the test set. Second, the

current approach requires a few failure instances

to select relevant sensors for the health indicator

construction. Future studies could investigate if it

is possible to select relevant sensors using less,

or even no, failure instances. Third, future studies

may perform an extensive grid search on the hy-

perparameters of our approach, in order to find the

best health indicators. Last, future studies could

analyze if the prediction errors of the different

sensors can be used to identify the failure mode

of (upcoming) engine failures.
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