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Remaining useful life(RUL) prediction of intelligent equipment plays a crucial role in avoiding major safety 
accidents and substantial economic losses from degradation failures. Recently, many studies focused on deep 
learning-based data-driven methods, such as long short-term memory (LSTM) neural networks, which used multi-
dimensions monitoring signals or features to predict the RULs. However, most existing methods are inability to 
acquire valid temporal information from long-term time series. Moreover, the input data containing much 
redundant information leads to imprecise RUL prediction results. To overcome the aforementioned weakness, a 
multi-scale LSTM neural network with multi-head self-attention embedding mechanism(MLSTM-MHA) is 
proposed in this article for RUL prediction. Firstly, the memory cells of LSTM are divided into several parts 
according to different temporal trend types, such as local trends, medium trends, and long trends. Fusing all types 
of memory cells can capture additional trend information and improve the performance of LSTM in learning time 
series. Secondly, the multi-head self-attention mechanism is embedded in the forgetting gate and input gate 
structure of LSTM, which can participate in training the MLSTM-MHA network and adaptively recalculates the 
network weights. The redundant information is assigned lower weights due to lower values by the attention 
module. Finally, a hot strip mill roller dataset is used to validate the superiority of the proposed method. 
Compared with the existing data-driven RUL prediction methods, the proposed method has a more accurate 
predictive ability.  
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1. Introduction 
Prognostics and health management (PHM) have 
received much attention in the field of industrial 
applications, which is significant for avoiding 
economic losses from degradation failures and 
ensuring stable operation of machinery. 
Remaining useful life (RUL) prediction is 
always regarded as the most challenging and 
meaningful task in PHM because deep 
characteristics of equipment are difficult to 
excavate from multi-scale degradation data (An 

2015). At present, data-driven RUL prediction 
approaches that use condition monitoring data to 
estimate equipment health state have become a 
significant focus. 

Generally, data-driven prognostic methods 
can usually be divided into two types: stochastic 
process-based methods and machine learning-
based methods (Li 2019). For the stochastic 
process-based RUL prediction methods, Zhang 
et al. (2018) summarized the current approaches 
to the Wiener process-based degradation data 
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analysis and RUL prediction. Wu et al. (2022) 
proposed an adaptive nonlinear Wiener process 
model with the degradation drift satisfying the 
closed skew-normal distribution to estimate 
bearing RULs. Ling et al. (2019) considered a 
two-phase degradation model with Gamma 
process, and a likelihood inference approach 
with Bayesian theory was proposed to predict the 
RULs of LEDs. The stochastic process-based 
methods can describe the random characteristics 
of equipment degradation process. Nevertheless, 
complex parameter estimation procedure of 
stochastic process-based approaches affects their 
efficiency in online RUL prediction. 

Instead, machine learning-based methods 
can learn the degradation characteristics of 
machinery from massive historical monitoring 
data and thereby predict the RULs automatically 
(Krot 2020). The potential information in the 
monitoring data can be mined by the deep 
structures of neural networks such as 
convolutional neural networks (CNN) and long 
short-term memory (LSTM). Yang et al. (2019) 
proposed an RUL prediction method based on a 
double-CNN model architecture that can 
intelligently extract critical features from 
original vibration signals. Chen et al. (2019) 
presented a general two-step solution for RUL 
prediction based on the nonlinear degradation 
process with KPCA and gate recurrent unit 
(GRU). Ma and Mao. (2020) predicted the ball 
bearing RULs by a LSTM network integrated  
with convolutional operation. Han et al. (2021) 
combined stacked autoencoder and recurrent 
neural network (RNN) to obtain health indicators 
without human interference, which was validated 
by a public bearing faults dataset. Liu et al. 
(2021) integrated the advantages of multi-stage 
LSTM model and clustering analysis, which 
improved the prediction accuracy of RULs of the 
aero-engine. These RNN variants such as GRU 
and LSTM can remember a part of temporal 
information to improve prediction accuracy 
(Elsheikh 2019). However, they can not retain 
the global temporal information in a long term 
and renew the local temporal information in time. 
And the contributions of temporal information at 
different times has not received attention. 

To break the bottleneck of existing RNN-
based RUL prediction methods, this paper 
proposed a multi-scale LSTM neural network 
with multi-head self-attention embedding 

mechanism (MLSTM-MHA) to extract different 
temporal degradation information from raw 
monitoring data. First, three multi-head self-
attention modules extract significant temporal 
information after the forget gate and input gate. 
Second, improved memory cells can capture 
various time-scale information by setting three 
memory sub-cell units. Finally, the comparative 
results with some state-of-art methods prove that 
the proposed method can predict RUL more 
accurately. 

The rest of this article is organized as 
follow. Section 2 presents a brief introduction of 
basic theoretical background. Then, the proposed 
method and the detail construction process are 
elaborated in Section 3. Next, the experimental 
implementation and comparison results are 
introduced in Section 4. Finally, the conclusion 
and future work  is given in Section 5. 

2. Basic theoretical background  
The functions of self-attention mechanism prompt 
the deep network to learn the concealed 
knowledge in time-series data closely related to 
the equipment degradation process. In practice, 
given the same set of queries, keys, and values, 
the model is expected to learn different 
behaviours based on the exact self-attention 
mechanism and then combine the other 
behaviours as knowledge to capture the various 
ranges of dependencies within the sequence. The 
structure of multi-head self-attention module is 
shown in Fig. 1. 

 
Fig. 1. Structure of multi-head self-attention module. 
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Since several self-attentions layers are 
stacked in parallel to form multi-head attention, 
the idea is to obtain multiple queries by linearly 
transforming the query using different weight 
matrices. Each newly formed query essentially 
requires a different type of relevant information, 
thus allowing the attention model to introduce 
more information into the computation.  

3. MLSTM-MHA network 
The MLSTM-MHA network is composed of the 
multi-head self-attention unit and multi-scale 
memory cell. 

The forget gate and the input gate in the 
LSTM network are responsible for selective 
forgetting and remembering of the hidden layer 
input and the current input, respectively. Both the 
forgetting ability to forget gate and the retention 
ability to input gate use the sigmoid function to 
adjust the hidden input and current input to 
between 0 and 1, and then decide which parts are 
input to the memory cell by:  

1( )t hi t xi t ii u h w x b� �� � �            (1) 

f 1 f ff ( )t h t x tu h w x b� �� � �            (2) 

where � �f ,h hiu u u�  and � �f ,x xiw w w�  denote 
the weight matrixes of current input data xt and 
hidden input ht-1, respectively; � �f , ib b b�  denote 
the bias vectors; and �  represents sigmoid 
function. 

However, in a time series of degradation 
data, the trend data at each time point possesses 
different importance and contains both valuable 
and redundant information. They provide different 
degrees of contribution to the predicted results of 
the equipment’s remaining useful life. Therefore, 
valuable information should be retained and 
redundant information should be eliminated in the 
forget gate and input gate according to the 
importance of the whole degradation sequence. 
Considering the good properties of the multi-head 
self-attention mechanism for time series learning, 
this paper proposed an LSTM-MHA network that 
embeds it into forget gate and input gate to 
achieve self-adaptive selection of the output. In 
each single-head self-attention module, the input 
x is processed initially in the embedding layer to 
acquire feature vectors P with dP dimension. 

Then, the query Qi, the key Ki, and the value Vi 
can be obtained as follows: 

,  ,  i i i
i Q i K i VQ W P K W P V W P� � �         (3) 

where Q Pd di
QW R �	 , K Pd di

KW R �	 , and 
V Pd di

VW R �	  are the three linear projection 
matrices. 

The three vectors Qi, Ki, and Vi are then put 
into the scaled dot product calculation part to 
calculate the attention weights and a reconstructed 
self-attention matrix, whose implementation 
process is as follows: 
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where dk is the dimension of K, and T denotes the 
transpose operation. In the end, all single-head 
self-attention modules are concatenated together 
to obtain the multi-head features based on (5). 

� �1, , h Pmultihead concat head head W� �, h ��head �, h �    (5) 

where concat(·) denotes the splicing operation on 
these single-head self-attention modules and then 
multiplies by the linear transformation matrix Wp. 
The resulting output of multi-head self-attention 
module has the same scale as the input x. 

Therefore, the formulas (4)-(5) have been 
updated as follows:

� �1( )t hi t xi t ii multihead u h w x b� �� � �     (6) 

� �f 1 f ff ( )t h t x tmultihead u h w x b� �� � �    (7) 

Because of the embedding structure, the 
multi-head self-attention module can participate in 
the training of the MLSTM-MHA network and 
self-adaptively recalculates the weights as the 
network parameters are updated. 

The degradation trend of the equipment 
performance is a long-time process, and it can not 
only contain a local trend related to short-term 
fluctuations but also a global trend related to long-
term degradation. Therefore, different time series 
data of equipment degradation data can contain 
additional trend information. To acquire a better 



1700 Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

prediction model in RUL prediction work, the 
model needs to record the overall change in 
equipment life using global trend information and 
update the current fluctuations using local trend 
information.  

Based on improved forget gate and input 
gate, a multi-scale memory cell containing three 
memory sub-cell units cs, cm, and cl is proposed. 
With the updated results of three sub-cell units, 
the multi-scale memory cell is renewed by local, 
medium, and global information, and the updating 
rule elaborates as follows. 

The local trend in equipment degradation 
represents the effect of changes in current work 
conditions on equipment performance. Therefore, 
the local memory sub-cell units need to capture 
the fluctuations of temporal degradation 
information rapidly, and the formula is defined as 
follows  

� �� �1tanhs t hc t xc t cc c multihead u h w x b�� � � � (8) 

where uhc and wxc denote the weight matrixes of 
current input data xt and hidden input ht-1, 
respectively; bc denote the bias vector; and tanh(·) 
is the activation function. 

The global trend majorly obtains long-term 
temporal information. Thus, the global memory 
sub-cell units should always be delivered in the 
MLSTM-MHA network, and the formula is 
written as follows: 

1l tc c ��                               (9) 

where ct-1 denotes the cell state at the last moment. 
It means that the global memory sub-cell units 
selectively contain all previous temporal 
degradation information at the current time point.  

The medium trend is between the local trend 
and the global trend. It required a balance between 
the retention of historical information and the 
volatility of current trends. he structure of the 
medium memory sub-cell units is similar to the 
structure of memory cell in traditional LSTM, and 
the updated formula is defined as follow: 
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Combine all the above operations, a novel 
multi-scale LSTM neural network with multi-
head self-attention embedding mechanism is 
constructed, and its topological structure is 
illustrated in Fig. 2. 

 
Fig. 2. Neuron structure of the MLSTM-MHA 

The iterative formulas of MLSTM-MHA are 
derived as follows: 
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where ot is the output gate; uho, wxo, and bo denote 
the two weight matrixes and bias vector, 
respectively; tc  is the candidate memory cell; and 
ht is the hidden output of MLSTM-MHA. 

4. Experimental results and discussion 
4.1.Dataset description and prerecession 
The industrial hot strip mill roller dataset by 
Baoshan Iron & Steel Co., Ltd. is composed of 
several subsets which has shown in Fig.3. Since 
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the roller inspection is mainly arranged after the 
processing of relevant products in the process of 
rolling steel, the run batch is used to characterize 
the rolling time information (Jiao 2021).  
 

 

Fig. 3. The several subsets from industrial hot strip 
mill rollers dataset. 
 

This dataset mainly records roller operation 
and maintenance information from 1580 hot strip 
finish mill equipment F1 to equipment F7. This 
paper chooses HM07, HM09 and HN60 to 
validate the superiority of the proposed method 
considering the integrity of data. As shown in 
Table Ⅰ, these three subsets such as HM07 
include condition monitoring data closely related 
to rollers performance, such as up and down time, 
steel production, rollers’ diameter, operation 
mileage and other vital information between 
December 2017 and August 2020. In this paper, 
rollers’ health indicators (HI) constructed by 
their diameter and remaining mileage are used to 
describe rollers’ degradation process. 

Table Ⅰ. Implement details of the MLSTM-MHA 

Roller Num Up time  Diameter(mm) 

HM07 2017/12/1  
1:06:00  824.94 

HM07 2017/12/1  
5:04:00  824.67 

    

HM07 2020/08/31  
23:54:02  739.4 

And a sliding window with window size L 
and step size s is adopted to segment data. For 
the train and valid data, a sliding window moves 
with a step size s from the life-start point to the 
life-end point. This paper chooses the same 

window size L and step size s considering the 
data consistency. The rollers’ RUL are specified 
as the time remaining between the current time 
and the time when the health indicator first 
reaches the failure threshold, i.e., 

0( ) { ( ) , 0}RUL t Ti t HI t t t�� �  �      (12) 

where �  denotes the failure threshold; t0 
indicates the current time. 

The min-max standardization is performed 
for the measured values to get health indicators 
of the HM07 dataset, as shown in (12): 

* ( ) min{ }
( )

max{ } min{ }
k k

k
k k

x t x
HI t

x x
�

�
�

        (13) 

where ( )kHI t  is the health indicator collected by 
the k-th roller at time point t. 

In order to compare the performance of the 
proposed MLSTM-MHA method with previous 
methods, several evaluation indexes such as root 
mean square error (RMSE), mean absolute error 
(MAE), and coefficient of determination (R2) are 
employed, i.e.,  

2

1

ˆ( )
N

i i
i

RMSE Y Y N
�

� ��            (14) 

1

ˆ
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i i
i

MAE Y Y N
�

� ��                (15) 

2 2 2

1 1

ˆ1 ( ) ( )
N N

i i i i
i i

R Y Y Y Y
� �

� � � �� �     (16) 

where N denotes the total sample number; Yi, îY
and iY  denote the true RUL, the predicted RUL, 
and the mean predicted RUL, respectively. 

4.2. Comparison results and discussions 
The experiment arranges three full connect 
layers after MLSTM-MHA to acquire final RUL 
prediction results. The hyperparameters of 
MLSTM-MHA network chosen by the grid 
search are described as follows: the layer number 
of MLSTM-MHA is 2, the neural number of 
MLSTM is 64 and the head number of MHA is 2. 
After cross validation, other implementation 
details are described in Table Ⅱ. 
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Table Ⅱ. Implement details of the MLSTM-MHA 

Parameters Value Parameters Value 
Learning rate 0.001 Fc1 layer size (64,16) 

Epoch 1000 Fc2 layer size (16,4) 
Window size L 5 Fc3 layer size (4,1) 

Step size s 1 Activation 
layers 2 

To demonstrate the superiority of the 
proposed MLSTM-MHA method, some state of 
art methods such as RNN, LSTM, BILSTM, and 
GRU are employed for comparison. The LSTM-
MHA also participated in comparative test to 
verify the effectiveness of multi-scale memory 
cell. For these time series prediction methods, 
the number of neurons, hidden layers, learning 
rate, and other hyperparameters are set by cross 
validation. All the models were implemented on 
a same workstation that had a GPU AMD Ryzen 
7 5800H. In order to reduce the training time of 
all the models, we removed some data of the 
health stage. Then they are divided into training 
data, valid data, and test data in 8:1:1. According 
to the engineering experience, the fault 
thresholds of HM07, HM09, and HN60 are set to 
0.1, 0.3, and 0.2 , respectively.  

The RUL prediction results for roller 
HM07 of different models are shown in Fig. 4. It 
can be obviously noted that MLSTM-MHA and 
LSTM-MHA have better performance when 
other prediction methods have large fitting errors. 
And the health indicators of these two methods 
are 334 and 335, respectively, at the last run 
batch point. It suggests that the proposed 
MLSTM-MHA and LSTM-MHA methods have 
high prediction accuracy for ultimate roller 
lifetime and roller RUL prediction.  
 

 
Fig. 4. The RUL prediction results for roller HM07 of 
different models. 

Comparing MLSTM-MHA with LSTM-
MHA, we can find that MLSTM-MHA is more 
consistent with the true health indicators in the 
first half of the roller run batch. The redundant 
information in input data makes LSTM-MHA 
unable to extract sufficient temporal information 
from the long time series data relying on single 
memory cell. However, the proposed novel 
structure of memory cells can deal with multi-
scale temporal information such as long trend, 
medium trend, and short trend. Hence the 
proposed MLSTM-MHA method can retain 
outstanding performance in the first half of the 
roller run batches. After 100 roller run batches, 
the fitness of LSTM-MHA is improved by multi-
head self-attention embedding mechanism. And 
comparing with traditional LSTM, the proposed 
LSTM-MHA can acquire better RUL prediction 
results at the last run batch point. It indicates that 
multi-head self-attention embedding mechanism 
can make the LSTM unit pay more attention to 
important information rather than redundant 
information. 

With the same HM07 datasets, the 
evaluation indexes for different roller RUL 
prediction methods are calculated and listed in 
Table Ⅲ. As for the RMSE evaluation metric, 
compared with LSTM-MHA, BILSTM, LSTM, 
GRU, and RNN, the improvement of MLSTM-
MHA for HM07 datasets are 61.94%, 78.81%, 
66.29%, 63.69%, and 78.68%. For the MAE 
evaluation metric, the improvements of 
MLSTM-MHA for HM07 datasets are 65.42%, 
73.56%, 56.71%, 55.15%, and 74.86%. For the 
R2 evaluation metric, the improvements of 
MLSTM-MHA for HM07 datasets are 2.37%, 
9.08%, 3.15%, 2.65%, and 8.96%. It can be 
obviously found that MLSTM-MHA achieves 
the best performance above other prediction 
methods.  

Table Ⅲ. Evaluation indexes for different roller RUL 
prediction methods in HM07 datasets 

 RMSE MAE R2 
MLSTM-MHA 0.01409 0.01071 0.9961 
LSTM-MHA 0.03702 0.03097 0.97308 

BILSTM 0.06648 0.0405 0.91322 
LSTM 0.0418 0.02474 0.96569 
 GRU 0.03881 0.02388 0.97043 
RNN 0.06609 0.0426 0.91422 
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As shown in Fig. 5 and Fig. 6, the number 
of points to be predicted is set to 340 and 310 for 
HM09 and HN60 datasets, respectively. The true 
RUL for rollers is 33 and 37 run batches, 
respectively. And the RUL prediction results 
acquired by MLSTM-MHA and LSTM-MHA 
are {33,37} run batches and {38,38} run batches, 
respectively. The evaluation indexes for different 
roller RUL prediction methods are calculated 
and listed in Table Ⅳ and Table Ⅴ. It can be seen 
that MLSTM-MHA still achieves the smallest 
value of RMSE and MAE error evaluation 
indexes and the biggest value of the R2 score. 
For the RMSE evaluation metrics, compared 
with LSTM-MHA, BILSTM, LSTM, GRU, and 
RNN, the improvements of MLSTM-MHA for 
HM09 and HN60 datasets are 43.76%, 58.13%, 
56.48%, 58.73%, and 62.24% and 11.54%, 
51.28%, 44.84%, 44.38%, and 43.10%, 
respectively. For the MAE evaluation metrics, 
the improvements of MLSTM-MHA for HM09 
and HN60 datasets are 42.65%, 57.31%, 55.91%, 
60.66%, and 63.41% and 11.17%, 38.26%, 
30.93%, 31.66%, and 36.23%, respectively. In 
the R2 evaluation metrics, the improvement of 
MLSTM-MHA for HM09 and HN60 datasets is 
7.32%, 17.42%, 15.60%, 18.17%, and 23.43%, 
and 1.11%, 14.60%, 9.97%, 9.72%, and 9.03%, 
respectively. Therefore, the proposed MLSTM-
MHA method can be appropriately applied to 
datasets of different rollers’ degradation types. 
 

 
Fig. 5. The RUL prediction results for roller HM09 of 
different models. 
 

Table Ⅳ. Evaluation indexes for different roller RUL 
prediction methods in HM09 datasets 

 RMSE MAE R2 
MLSTM-MHA 0.01956 0.01116 0.96943 
LSTM-MHA 0.03478 0.01946 0.90332 

BILSTM 0.04672 0.02614 0.82558 
LSTM 0.04494 0.02531 0.8386 
 GRU 0.0474 0.02837 0.8204 
RNN 0.05181 0.0305 0.78543 

 

 
Fig. 6. The RUL prediction results for roller HN60 of 
different models. 

Table Ⅴ. Evaluation indexes for different roller RUL 
prediction methods in HN60 datasets 

 RMSE MAE R2 
MLSTM-MHA 0.02238 0.01304 0.96186 
LSTM-MHA 0.0253 0.01468 0.95127 

BILSTM 0.04594 0.02112 0.8393 
LSTM 0.04057 0.01888 0.87465 
 GRU 0.04024 0.01908 0.87668 
RNN 0.03933 0.02045 0.88219 

5. Conclusion 

In this paper, a novel RUL prediction method for 
hot strip mill rollers on the principle of time 
series forecasting was proposed. A new memory 
cell was designed to extract different scale 
information from long time series data. By 
dividing the memory cell into three parts, 
MLSTM can capture local trends, medium trends, 
and global trends information from degradation 
process. Then MLSTM-MHA was proposed by 
integrating forget gate and input gate with multi-
head self-attention mechanism in MLSTM, , 
which could pay more attention to important 
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information by improving the weights of gate 
units. Via the industrial hot strip mill roller 
dataset by Baoshan Iron & Steel Co., Ltd., the 
performance of the proposed method was 
verified and compared to other methods based on 
BILSTM, LSTM, GRU, and RNN. The 
comparative results demonstrate that the 
MLSTM-MHA method possesses the stronger 
temporal data extracting and prediction ability, 
and thereby it is more suitable for hot strip mill 
rollers RUL prediction.  

In future work, a weight adjustment 
strategy to multi-scale memory cell will be 
explored to improve the performance of online 
rollers’ RUL prediction with multi-stage 
degradation types.  
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