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Testing autonomous vehicles is a costly and tedious task, but essential to ensure their safe operation. In order to
cover diverse scenarios and stage emergency situations like accidents safely, many manufacturers rely on automotive
driving simulators. These simulators are virtually mirroring real driving situations by simulating an ego vehicle
and its sensors to generate perceptual output for training or testing purposes of the autonomous driving software.
Currently, a “functional paradigm” is followed by creating a realistic representation of the environment and running
an ideal simulation. However, in reality sensors do not generate ideal outputs, as they are victim to various
environmental effects like interfering signals, reflections, blockage and naturally ageing and wear. Furthermore,
the environment can be flawed, e.g., traffic signs may be damaged or obscured. Consequently, we suspect that in
the future a shift to a “failure paradigm” will become necessary where simulators include faults and failures of the
infrastructure, the ego vehicle and its components. With that, a more realistic representation of driving in the actual
world could be achieved, producing valuable data for training and testing of fault detection mechanisms.

With this paper we aim to make first steps towards the direction of a failure paradigm by the example of automotive
radar. We study existing literature regarding the degradation of the radar function and propose four generalized
failure models. We present the partial implementation of these in the open-source simulator CARLA and discuss
experimental results as well as future contributions to this topic.
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1. Introduction usage: Actual autonomous driving software can
be directly connected to the simulator for testing,
or the perceived data can be collected for training
and analyses purposes. This Al-based software re-
lies on perception data of various sensors, promi-
nently cameras, radars and lidars. To refine the
scope, this paper focuses on automotive radar. The
application of radar in the automotive area dates
back over 50 years ago, e.g., Grimes and Jones
(1974) discusses its application in the context of
automatic breaking. Since then, its quality has
improved significantly and it became a reliable
perception component for obstacles and their ve-
locity. Owing to that fact, automotive radar is a
prime sensor of currently developed automated
and autonomous solutions.

Every leading car manufacturer is currently work-
ing on autonomous driving solutions. Testing
these is essential to ensure the vehicle’s safe op-
eration in any conceivable situation, though it is a
costly and tedious task. A plethora of different test
scenarios are required to train and validate the au-
tonomous function. This is extremely challenging,
as the amount and diversity of required test scenar-
ios can hardly be covered by test drives alone. In
order to increase the diversity of test scenarios and
stage emergency situations like accidents safely,
many manufacturers rely on automotive driving
simulation. Automotive driving simulators exten-
sively model some 3D environment and simulate
an ego vehicle and its sensors. The usual output
comprises perception data as well as ground truth
and meta information, providing for a manifold

However, like every electronic component it
can age and is not free of misperceptions due
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to environmental disturbances. These are, for in-
stance, interfering signals, reflections, obscuration
through mud. water, foliage etc. Yet. current auto-
motive simulators, already challenged by creating
a realistic representation of real driving scenarios.
are following a “functional paradigm™ where the
modeled environment and the sensed perception
is most ideal. We can see that in reality sensors do
not generate an ideal output and likewise the vehi-
cle’s environment can be flawed, e.g.. traffic signs
may be damaged or obscured. Because of that,
we suspect that in the future a shift to a “failure
paradigm™ will become necessary. Thereby, the
idea is that simulators include faults and failures
of the infrastructure. the ego vehicle and its com-
ponents, with the goal of achieving a more real-
istic representation of driving in the actual world.
The generated data is valuable to the training and
testing of fault detection mechanisms. Whereas
efforts for creating more realistic radar models up
to synthetically altering generated data to match
the real-world exist (see e.g. Ngo (2023)), best to
our knowledge, there is no model that includes and
combines effects of functional safety, safety of the
intended function and cybersecurity to date.

To change this, we extend the open-source sim-
ulator CARLA with four parameterizable failure
models for its existing radar sensor, based on a
literature study on the various factors leading to a
radar degradation. The paper is closed by showing
first results and discussing future extensions to
this topic.

2. Automotive Radar

Radar is a historically grown technology that has
evolved to a reliable perception sensor for deliv-
ering object information. In the big picture, an
autonomous vehicle (AV) fuses the data of multi-
ple sensors to gain a most realistic representation
of the environment. Thereby, the radar sensor, if
used, prominently contributes to the calculation
of velocities and directions of detected objects.
However, even though it is a comparably robust
technology. it can be influenced and flawed by
diverse factors. Subsequently we provide a brief
overview on its functional specification, and on
behalf of that, discuss how various effects can lead

to a decreased signal or information quality.

2.1. Functionality

Due to the versatile requirements of the AV a
plethora of different automotive radar sensors, dis-
tinguishable by used frequencies, covered ranges
and price sections. exist. An abstract functional
scheme can be defined as depicted in Figure 1.
There, a radar sensor generally consists of a trans-
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Fig. 1. Radar Structure

mitter and a receiver, both equipped with one or
more antennas, and a signal processing unit. The
transmitter sends out radio waves in a range of
76 to 81 GHz (see Waldschmidt et al. (2021):
Yeh et al. (2017)). Influenced by the mounting
angle (see also Murad et al. (2012)), these waves
form a cone directed to the target area that forms
the sensor’s field of view (FOV). A careful cal-
ibration of the FOV is essential for performing
subsequent sensor data fusion and combining the
perceived data to an accurate representation of the
real world. Transmitted radio waves are reflected
and adapted by any hit object surfaces in that
cone such as pedestrians and vehicles, but also
other reflecting surfaces including the road and
traffic signs. However, not all of these waves hit
reflective surfaces. and thus only a portion of them
(that potentially mark hit objects) are reflected
back to the receiving antenna(s). Received waves
are collected and forwarded to the signal pro-
cessing unit where information on the hit objects
is determined. This information comprises most
importantly (see also Wolff (2009))

e the angle and direction to the object,
e the distance to the object based on the
elapsed time between sending and re-
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ceiving,
e and the velocity relative to the sensor
based on the Doppler-Effect®.

Further auxiliary information such as the radar
cross section (RCS), describing how detectable an
object is by radar based on its reflection proper-
ties, can be determined. With that, RCS provides
valuable information for object classification (see
also Hasirlioglu et al. (2016)). High resolution
radar sensors allow for the determination of object
shapes or even images. Consequently, radar sen-
sors provide viable information for applications
like automated cruise control, collision warning
and mitigation systems, as well as the object de-
tection, tracking and trajectory planning of the AV.

2.2. Failures, Faults and Incidents

There are various factors increasing the risk for
failures of automotive radars ranging from minor
errors in the object detection to the entire loss of
the sensor or its provided information. We can
categorize these classically as (i) hazards to the
sensor’s functional safety, leading to failures of
the sensor module itself, (ii) hazards to the safety
of its intended function, leading to functional in-
sufficiencies where the sensor module is operating
flawlessly, yet due to misuse or disturbances the
output signal deviates from the expected and (iii)
cybersecurity incidents, where the sensor’s func-
tion is actively manipulated by an attacker.

The first category concerns any kinds of failures
that are related to the sensor’s hard- and software,
ranging from production and design errors to nat-
ural effects of ageing and wear. As any electronic
part, radar sensors can potentially degrade over
their deployment time due to the ageing phenom-
ena on transistor level. This can lead to manifold
hardware faults (for more information see Ha-
lak (2019)), but also more commonly understood
problems such as loose contacts, which may lead
to data loss by disturbances of the existing data

2The Doppler-Effect is the apparent change of a wave’s fre-
quency in relation to an observer that is moving relative to its
source. Radar technology makes use of this effect by analyzing
the Doppler frequency shift of the received signal and measur-
ing the velocity of the moving object.
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connections. The ageing effect is accelerated by
environmental conditions such as extreme temper-
atures and temperature changes induced by the
predominant climate and weather condition of the
vehicle’s operating area, or dispensing heat of
the motor engine. Further, sensors are naturally
exposed to nonlinear movements like vibrations,
caused by the vehicle’s engine, dynamic driving
(braking and accelerating), as well as different
road surfaces or due to bad sensor integration (see
Hau et al. (2017, 2020)).

Vibrations can affect the radar in several ways.
In the most straightforward case, we can observe
a direct influence on the signal quality. Hau et al.
(2017) present a radar signal model and test the
effects of vibration on it. Thereby, the authors
were able to show that the disturbance of the
radar signal’s phase information leads to a shift
in the Doppler spectrum. Recalling, the Doppler-
Effect is used to measure the velocity of hit objects
by analyzing the frequency shift. Consequently,
resulting velocity measurements can be flawed,
and as stated by the authors, lead to a faulty
distinction between stationary and moving targets.
In this case, the failure lies somewhere in between
category (i) and (ii), because we can assume that
an automotive radar should be capable of dealing
with expected vibrations, e.g., coming from the
engine. Yet, heavy vibrations due to unexpected
road surfaces, perhaps caused by driving offroads,
can be considered beyond the scope of the in-
tended usage and thus are not a failure of the
sensor functionality. Besides that, vibrations can
enhance the ageing phenomena. Commonly this
phenomena is dealt with by predicting the compo-
nent’s degradation for the envisaged deployment
time in regard of its functional requirements and
the assumed environmental conditions. Based on
that a maintenance plan is derived. For example,
Tinga et al. (2017) model the ageing effect of a
radar system’s printed circuit board (PCB) due
to thermal fatigue and mechanical fatigue as a
consequence of vibrations for the purpose of pre-
dictive maintenance. This demonstrates that vibra-
tions and temperature changes can accelerate the
degradation of a radar system. Though, it must be
mentioned that the authors regard the radar system
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of a navy ship, which is much different from
the radar sensor deployed in vehicles and further,
the deployment time as well as the environmental
conditions differ heavily between the automotive
and the maritime area. This may be a reason why
the effects of ageing in automotive radar is only
superficially discussed in the literature.

Additionally to that, the sensor’s mounting can
be affected by vibration. A flawed mounting can
potentially lead to shifts of the sensor’s position
and angle. As mentioned earlier, the position and
angle define its conic FOV and thus are crucial
for fulfilling the intended task. Depending on the
degree, such a shift can remain unnoticed, but also
lead to an entire loss of information. The latter
is the case if the sensor is, e.g., pointing to the
sky, the ground, or the FOV being blocked by
the vehicle’s covering. In addition to the natu-
ral ageing effect, this phenomena could also be
caused by minor collisions with other vehicles or
objects, for instance, a minor parking accident that
does not seem to afford the vehicle to go to the
repair shop. We can categorize these failures as
(ii), because the functionality of the sensor itself
remains unchanged, but the shifted FOV leads to
unexpected or ineffective signals, qualifying as the
loss of sensor. Additionally to the blockage of the
sensor by an unwanted shift in position, block-
age can also be caused by obscuration through
mud, foliage, but also water and ice as stated in
more detail in Murad et al. (2012). This kind of
blockage can lead to the identification of very
close detection points that may lead to an inter-
pretation of very close objects and thus (partially)
prevent the correct detection and interpretation of
the surroundings (see also Fetterman and Carlsen
(2016)).

With the radar’s basic function being depen-
dent on the reflection of signals, the reflection
properties of surrounding objects make a critical
factor. For instance, some object surfaces are more
absorbing than others and thus only lead to a
weaker detection. We do not consider this effect
as a failure, because it is simply a result of the
sensor’s base mechanism. However, a commonly
discussed problem based on reflections is the sig-
nal’s backscatter on rainy weather. Raindrops, de-

pending on their size and distribution within the
antenna beam, reflect and absorb sent out radar
signals (see Hasirlioglu et al. (2016)) potentially
leading to a degraded perception. To test the in-
fluence of these effects, Hasirlioglu et al. (2016)
measure the radar cross section (RCS) under dif-
ferent levels of rain. They come to the conclusion
that rain can decrease the measured RCS by up
to 67%. For object classification methods that rely
on the reflection characteristics of a target this can
lead to false identifications and potentially false
decision making. Another reflection related prob-
lem is that the reflected signal takes an indirect
path back to receiver, where it first bounces to a
different target (a highly reflective surface like a
traffic sign) creating a multi-path reflection (see
Chamseddine et al. (2021)). This indirect reflec-
tion leads to the detection at a wrong position with
different range and/or azimuth, often creating a
so-called ghost target; a mirror-like reflection of
the actual target at a different position.

Another vividly discussed phenomena is inter-
ference. With the increasing usage of automo-
tive radar as a source for autonomous functions
and automated safety functions (see Waldschmidt
et al. (2021)), it is anticipated that vehicle-to-
vehicle radar interference will become a signifi-
cant problem (according to, e.g., Al-Hourani et al.
(2017); Grimes and Jones (1974)). Thereby the
victim radar is receiving another radar’s signals.
The consequences are noise polluted radar fre-
quencies, and similar to reflections, the identifica-
tion of ghost-targets is possible. Current research
is focusing on mitigation techniques to decrease
the consequence of this effect by, among others,
various signal processing methodologies. While
this effect classifies as category (ii), it is con-
ceivable that interference are caused intentionally,
classifying as category (iii). Regarding cyberse-
curity attacks on radar, Yeh et al. (2017) separate
between jamming by saturating the receiver with
noise, spoofing as the replication and retransmis-
sion of valid signals to provide false information
and interference as the modification or disruption
of the radar signal due to unwanted signals. In
this way, an attacker could provoke the identifi-
cation of ghost-targets, the denial of service due
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to jamming, or even the spreading of false veloc-
ity and distance information through sophisticated
spoofing attacks. While these attacks are possi-
ble in theory, it must be mentioned that several
difficulties remain such as the vehicle being a
moving target that would need to be followed and
the attacker requiring to sent on exactly the same
frequencies.

3. Radar Failure Models

In the previous section we presented effects that
can degrade or avert the radar perception. In real-
ity their appearance is very unique to the situation.
For example, the kinds of vibration working on
a radar depend on the vehicle, the sensor itself
and the road properties. Moreover, these effects
change whenever the vehicle is braking, accelerat-
ing or the environment varies. Additionally to that,
we could also see that some effects despite having
a different nature actually share common results
like interfering signals of other sensors or spoof-
ing and intentional interference. Consequently, in
this section we generalize the discussed effects by
proposing four distinct failure models:

(1) Data transfer error
(2) Shifted FOV

(3) Signal disturbance
(4) Blockage

Further on, we are describing these failure models
in more detail and discuss partially how their be-
havior is parametrized to achieve a more realistic
staging of the effect. In the current state of our
research we neglect considerations that are spe-
cific to the radar’s environment. For that reason,
we do not provide a model that covers reflection
based failures, as it would afford the identification
of potentially reflective surfaces in the simulation
and thus presents a more sophisticated modeling
and manipulation. In accordance with that, we are
treating environmental aspects like road surfaces
and the weather only superficially in the current
state of the subsequently described models.

3.1. Data Transfer Error

The data transfer error characterizes by the (pro-
gressing) loss of single detection points up to
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the entire information produced by the sensor.
Thereby, we aim to cover failures based on loose
contacts, e.g., induced by the ageing phenomena,
and partial jamming. Due to the progressing na-
ture of loose contacts, as well as the timely behav-
ior of jamming, we decided to make this model
parametrizable by:

Start time of the error
Duration of an error
Interval the error reappears
Progression rate

Because we cannot assume that a failure is already
active on start of the simulation, we make the first
appearance of the failure a user specific choice in
terms of a starting time. Further, especially regard-
ing jamming, it is conceivable that the failure only
persists for a given interval and then vanishes,
possibly reappearing again. As loose contacts can
progress over time, we also consider a progression
rate to what the failure increases in its effect. By
this we can model errors which occur for a short
time period but with a high frequency, as well as
errors that occur less often but for a longer time
period.

3.2. Shifted FOV

This model represents shifts of the sensor’s FOV
due to collisions or ageing enhanced vibrations
that work on the sensor’s mounting. To cover
these effects, the model is made adjustable by the
following parameters:

Shift of the position
Shift of the rotation
Start time / event
Progression rate

The shift of the position (in meters) and rotation
(in Euler angle) is crucial to define the direction
and angle the radar can move to in case of a
collision or a degradation of its mounting. These
can be, among others, given by the properties of
the mounting or simply for the desired simulation
effect (e.g., considering a specific collision shall
be staged). For the degradation of the mounting a
start time has to be defined. This can be simply
the start of the simulation, however, sometimes
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we want the failure to start after several driving
hours have been performed. Once this start time
is reached, the sensor starts to shift its rotation
and/or position by the provided parameter. Op-
tionally in that scenario, a rate describing the oc-
currence of the next shift can be determined, used
in simulations where we want to express a pro-
gression of the failure, i.e., simulating a steadily
progressing shift. For the collision based shift we
require to define a triggering event rather than a
starting time, such as the first collision the ego
vehicle experiences.

3.3. Signal Disturbance

With this model we aim to generalize data falsi-
fication on signal basis through interference, vi-
bration and possibly spoofing. Thereby this model
covers two failure kinds: (1) the generation of
detection points of non-existent objects, subse-
quently referred to as ghost detection points, and
(2) partial velocity and distance falsification of
valid detection points. The first failure kind ab-
stracts the effect of interfering signals and mali-
ciously placed signals and the second kind rep-
resents maliciously replayed signals as well as
signal disturbances through vibration. In order to
make a single model capable of covering all these
effects, we require to make it adjustable in at least
the following parameters:

Start and end time of the error
Ghost detection points
Distance falsification

Velocity falsification

Similar to previous models, the occurrence time
of the failure can be defined. This is useful for
various reasons. In reality the effect of vibration
may always be present, though the effect of in-
terfering signals and attacks is bound to other
vehicles and potential attackers being within the
range of the victim radar. Since we are currently
not modelling the environment in this extent, we
make an occurrence time definable to reflect that
the effect may not persist throughout the entire
simulation. Which kinds of failures are active is
a user specific choice. The ghost detection points
are modeled as a cluster or group of detection

points that occur randomly within the FOV the
sensor for an arbitrarily long time interval between
milliseconds up to a few seconds. While distance
and velocity falsifications are not required to be
active at the same time, we model the failure in the
same manner: A group of valid detection points
(randomly chosen), that are assumably reflecting
the perception of an actual object, are falsified.
Similar to the ghost detection points, the effect
lasts up to a few seconds.

3.4. Blockage

A heavy shift of the sensor’s FOV or its obscura-
tion through mud, foliage, water and ice can lead
to a blockage of the sensor. The results are the per-
ception of very close detection points without any
relative velocity to the radar, because the object
leading to the blockage and the radar are moving
at the same speed. With this failure model we aim
to represent blockage that is configurable by the
following parameters to cover the properties of
different sensor types and blockage kinds:

e Start time / event
e Blockage degree

In order to reflect that the blockage appears after
a while of driving, e.g., by accumulating mud or
snow, a start time for the effect must be deter-
mined. The effect on the signal depends on the
kind of blockage. For instance, dust may only
lead to partial blockage, while mud or a shift in
the sensor’s mounting may lead to entire block-
age. Given that, it is essential to make the degree
of the blockage (in percent) specifiable. In case
the blockage is a result of a FOV shift due to
a collision, instead of the start time a triggering
event can be defined, similarly to the failure model
concerning the FOV shift. With that we can cre-
ate a dynamic transition between the shift in the
FOV and sensor’s blockage. Since blockage can
affect the entire sensor or only certain, particularly
exposed areas, a conceivable refinement would
be to make a blockage area definable. However,
this is highly depending on the radar’s properties
and thus affords further research to be considered
accurately.
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4. Application in CARLA

In the following we show first efforts regarding the
implementation of the presented failure models,
focusing on the data transfer error (1) and the
shifted FOV (2). Therefore, we make use of the
CARLA" open-source automotive driving simu-
lator which is based on the Unreal Engine 4 and
provides several flexible ways of manipulating
the simulation and the data output. As pictured
in Figure 2. CARLA is separated by a server-
side that simulates the world including traffic par-
ticipants, the ego vehicle and its sensors, and a
client-side that manipulates the simulated objects
via dedicated commands. Most of the relevant

LibCarla

() (Gem) 5 ~(aw)
Simulater client

Fig.2. CARLA Pipeline ¢

specifications, e.g., vehicle type and sensor setup,
can already be made on the client-side. However.
for manipulating CARLA internals an adjustment
of the server's C++ base becomes necessary.
While it is possible to extend the server by self-
written models, typical automotive sensors are
freely available. Based on the instantiated sensors,
the server delivers sensor outputs and world infor-
mation to the client. We base the implementation
of our failure models on the native CARLA radar
model. Since this model makes use of ray-casting
rather than acting like real physical representation
of a radar, we are required to implement signal
based errors as a manipulation of the information
that is sent to the client. Given that, the data
transfer error is implemented by systematically
leaving out transmissions of actual radar detection
points to the client in the user defined duration.
By making use of the start time, duration and
reappearance interval parameters, we can simulate
a steadily appearing data loss, for instance, every
5 seconds the transmission is left out for 100

bhttpe //carla org/ accessed 2023-03-27
dhttps //carla readthedocs ic/en/C € 7/de
v/how_to.add.a_new_senscr/ accessed 2023-03-30
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milliseconds. In the current implementation, the
progression rate is simply a defined increase of
that duration.

The shift of the FOV is implemented in accor-
dance with the presented model, though a pro-
gression rate is currently not considered. The user
must define the degree of the shift in its position
and/or rotation. Then the shift occurs by the given
start time or is triggered by the first collision
event. On that trigger. the sensor specification is
dynamically rewritten by the adjustment of its
position and/or rotation. For the collision based
failure we listen to CARLA's internal collision
sensor and request a position/rotation update on
this event.

Figure 3 shows a simulation scene with a
shifted FOV. In the top picture we can see the orig-
inal radar placement, centered on our ego vehicle
indicated by centered detection points (marked
white). In the bottom picture we can see that the
FOV is shifted to the right, as the detection points
cover more of the building on the right, however,
cease to cover the buildings on the left.

Fig. 3.

Shifted FOV
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5. Conclusion

The present paper provides a literature-based
overview on diverse radar signal degradations. An
abstraction of these effects to four general fail-
ure models was performed, covering failures of
the categories of functional safety, safety of the
intended function and cybersecurity. First efforts
and results of an implementation in an automo-
tive simulator have been presented that give an
impression of further possibilities and data usage
opportunities. In the future we want to implement
the missing failure models and perform some re-
finements. We aim to include considerations of
the environment, e.g., the sensor blockage being
triggered by driving over muddy roads, snowy
weather etc., or the loose contact progressing in
relation to driving over rough road surfaces. At the
same instance, we want to add more detail to the
simulated effects and enable a smooth transition
between instantiated failure models. As an exam-
ple, instead of the blockage simply appearing at
a defined time or event, we envisage to model
a slowly progressing and increasing obscuration
that eventually leads to a total blockage. Further-
more, we want to review degradation effects of
other automotive sensors, like lidar and camera,
and derive failure models similarly.
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