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The electric power system lies at the heart of modern society. To optimize the total cost of the system a trade-off
between investment and reliability must be made. Power system reliability analysis (PSRA) typically quantifies the
reliability of the system using fixed component failure rates. However, the probability of failure for a component
increases with usage. Therefore, a health index model based on failure modes, effects, and criticality analysis
(FMECA) is presented to facilitate in the calculation process. FMECA is used to identify the failure mechanisms and
assign a risk priority number (RPN) based on the severity, occurrence, and detectability of each failure mechanism.
The health index is then evaluated based on failure mechanisms rather than directly from condition data and each
failure mechanism’s contribution to the overall health index is weighted relative to the RPN. A case study is presented
where the health indices for a fleet of high-voltage circuit breakers (HVCBs) are evaluated based on data obtained
from the Icelandic transmission system. The trip coil current (TCC) is a readily available measurement that can
detect electrical and mechanical issues within HVCBs and was used as a key assessment criterion in determining the
health indices for the HVCB fleet.
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1. Introduction

1.1. Background

Power system reliability analysis (PSRA) is a field

of study that deals with the reliability assess-

ment of the electric power system. PSRA typi-

cally models the reliability of a system consisting

of generators, transmission lines and occasion-

ally transformers. However, high-voltage circuit

breakers (HVCBs) are also essential components

within the substation.

When adding an individual component into

PSRA we are interested in estimating its proba-

bility of failure which increases with component

wear. Condition monitoring techniques have ad-

vanced through the years and can indicate the

amount of wear a component has encountered.

However, this information is rarely compiled into

a single index that determines the health of a

component and its probability of failure.

HVCBs are mechanical switching devices

which protect equipment against damage due to

sustained over currents (Garzon, 2002). The over-

all operation of an HVCB control circuit is shown

in Fig. 1. When there is a fault on a line the current

transformer (CT) detects the increased current and

increases the current in the auxiliary circuit. This

causes actuator A1 which is normally open to

close, completing the trip circuit. The trip coil in

the trip circuit energises eventually causing actu-

ator A2 to hit the HVCB latch. This releases the

stored energy within the HVCB operating mech-

anism and opens the HVCB contacts. The fault is
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now isolated.

Fig. 1. HVCB control circuit

When an HVCB is carrying a current in the

closed position its reliability is dependent on the

HVCB opening on command and the HVCB not

opening without a command (Forootani et al.,

2012). These two failure modes result in the non-

fulfilment of the HVCBs function of system pro-

tection.

Condition-based maintenance strategies have

been shown to lead to improvements in reliability

(Janssen et al., 1992). Consequently, asset man-

agers are transitioning from predetermined (time-

based) preventive maintenance to condition-based

maintenance strategies. Therefore, methodologies

are needed to assess the relative health of HVCBs.

The doubt concerning HVCBs lies in the first

trip. The first trip is the first operation of an HVCB

after a long period of idleness (Sweetser et al.,

2002). HVCBs can fail in the closed position but

continue to carry the current. Therefore, uncer-

tainty is associated with whether an HVCB can be

relied upon without actually taking the HVCB out

of operation to conduct functional tests. Method-

ologies that can use already acquired condition

data to determine the relative health of a fleet of

HVCBs will guide asset managers in making more

informed decisions.

Transmission System Operators (TSOs) collect

a wide range of data related to the health of a com-

ponent. Issues such as data being hidden, deter-

mining which data are relevant or figuring out how

to interpret the data, are of concern. Displaying

a single-valued health index can help to alleviate

these issues. Having a single-valued health index

is useful when performing condition-based main-

tenance. However, when performing PSRA using

Monte-Carlo simulation methods, failure rates are

needed as input. Therefore, for this purpose, the

health index based on condition data needs to be

converted into a condition-dependent failure rate.

Failure modes, effects, and criticality analysis

(FMECA) is a well-known risk analysis method to

assist in the failure analysis of complex systems.

A failure mode is how a failure has occurred, but

does not state why the failure occurred. This is left

to failure mechanisms, which are the physical pro-

cesses that lead up to the failure modes (Rausand

and Hoyland, 2003). The information collected by

experts within an FMECA could be useful when

creating a component health index model.

1.2. Related work

Health index models for transformers derived

from condition data using a multi-criteria analysis

approach have been developed in Jahromi et al.

(2009). Condition data gives an idea of the amount

of wear a component may have experienced and

can be used to predict the probability of failure.

Jahromi et al. (2009) assess the condition data

directly when creating the overall health index and

do not create the health index model by assessing

the probability of specific failure modes. Foros

and Istad (2020) combine the transformer health

index model with failure statistics to determine an

apparent age of a transformer; the authors indi-

cated the need for future work in creating a health

index model based on failure modes to give a more

physical basis for the health index.

Lorin et al. (2016) illustrate the use of FMEA

to create a transformer fault tree from operational

parameters leading to transformer failure. Much

work has been conducted with respect to the

health of power transformers but not with HVCBs.

Runde (2012) presented an analysis of HVCB

failure frequency as a function of age. It was found

that most but not all of the HVCBs analysed had

a higher failure frequency with increasing age.

However, no work was conducted on how the



1748 Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

failure rate depends on the deterioration of the

component’s technical condition.

1.3. Outline and contributions

In this paper, an FMECA will be conducted for

HVCBs. A risk priority number (RPN) will be

calculated for all failure mechanisms and used to

provide a justification for the weighting factors

used within the health index model. The weighting

of the failure mechanisms based on the RPNs are

multiplied by a score based on expert judgement,

which is named the expert judgement score (EJS).

The summation is taken for all failure mechanisms

and normalised to provide a single health index.

Thus, the paper makes the first steps towards

estimating condition-dependent failure rates of

HVBCs. More specifically, the contributions will

be to:

(i) Present a health index model based on failure

mechanisms

(ii) Propose the use of RPN values from an

FMECA to justify the weighting factors for

the failure mechanisms within the health in-

dex model

(iii) Propose the use of an expert judgement score

(EJS) based on the evidence of a failure

mechanism occurring

(iv) Evaluate the methodology using HVCB con-

dition data

(v) Investigate the correlation between age and

health index for a fleet of HVCBs.

The rest of the paper is organised as follows:

Section 2 will introduce the overall framework.

Section 3 will present an FMECA for HVCBs.

Section 4 will discuss the condition data avail-

able which is used as the evidence to detect the

presence of failure mechanisms. Section 5 will

present the final health index model based on fail-

ure mechanisms. A case study will be presented in

Section 6 followed by conclusions in Section 7.

2. General framework

The methodology that we propose in this paper

to convert condition data into a health index is

shown in Figure 2. This methodology makes use

of an FMECA which is conducted by an evalua-

tion team consisting of subject experts. The output

of the FMECA is the RPN and information linking

failure mechanisms to condition data. The evalu-

ation team assesses the evidence for each failure

mechanism occurring based on the condition data

using their expert judgement to derive an expert

judgement score (EJS). To automate the process

the evaluation team can also set appropriate lim-

its for deriving the EJS from condition data and

revise these limits when necessary. The RPN and

EJS are then used as inputs into the health index

model. The RPN is used as a relative weighting

factor and is multiplied by the calculated EJS

for each failure mechanism. The results are then

summed and normalised to provide a single health

index. This health index based on condition data

can be used by TSOs to more accurately identify

the components in need of maintenance.

Fig. 2. Health index calculation using FMECA.

3. Failure modes, effects, and criticality
analysis (FMECA)

FMECA is conducted as per standard IEC 60812

(IEC, 2018). It is a systematic tool for compiling

the knowledge of various subject experts about

how a component can fail. The standard FMECA

template from Rausand and Hoyland (2003) was

modified to also include RPN values, which will

be used as a structured way of assigning weighting
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factors in a component health index model. The

RPN can be calculated as per Equation 1. A high

RPN indicates that the failure mechanism has a

high risk of affecting the reliability of the device.

RPN = S ×O ×D (1)

where:

S = Severity of the consequences

O = Occurrence rate

D = Detectability of the failure mechanism.

The severity, occurrence and detectability of

each failure mechanism can be graded on a scale

from 1 to 10 with the help of expert judgement.

The scales used for scoring the occurrence, sever-

ity and detectability can be found in Tables 1.1 to

1.3 respectively in Liu (2016). The detectability

refers to how detectable the failure mechanism

is using current procedures. A failure mechanism

that is easily detectable will receive a low score re-

ducing the RPN. Kapur and Pecht (2014) provide

an RPN classification scheme according to risk

level, whereas Liu (2016) provides a numerical

quantification scheme. This numerical quantifica-

tion of the RPN is more useful for our purposes

when creating a health index.

The Switchgear Committee of the IEEE Power

and Energy Society (Mitchell et al., 2019) con-

ducted a failure modes and effects analysis

(FMEA) for HVCBs. This information collected

by experts in the field was used to identify the

failure modes and mechanisms experienced with

HVCBs. Based on the information in (Mitchell

et al., 2019), RPN values were then calculated for

all of the failure mechanisms. Table 1 shows the

calculated RPN values for the 14 identified HVCB

failure mechanisms.

The results of the FMECA indicate that when

an HVCB is in the closed position the failure

mechanisms with the highest RPNs are failure

mechanisms 1 and 10 which are open or shorted

trip coil and trip latch not secure respectively.

4. Condition data

Condition data can be used to give an indication of

a component’s health. It is used as evidence for the

Table 1. Calculated RPN values for each HVCB

failure mechanism.

Failure mechanism RPN

1. Open or shorted trip coil 90
2. Improper lubrication of the trip latch 80
3. Loss of spring energy 81
4. Control circuit failure 81
5. HVCB operation blocked 64
6. Mechanism failure 56
7. Trip latch surface wear 64
8. Mechanism below rated temperature 9
9. External circuit failure 81

10. Trip latch not secure 96
11. Stray current in trip circuit 48
12. Ground on trip circuit 48
13. Self-protective feature of CB 80
14. Loss of voltage on undervoltage trip 24

scoring of the likelihood that a failure mechanism

will occur. Component condition data can come

in the form of condition monitoring data, mainte-

nance records, operation records and other sources

(Cole and Macarthur, 2019).

4.1. Condition monitoring data

There are many condition monitoring techniques

available for HVCBs such as coil current, travel

curve, dynamic resistance, vibration and thermal

measurements (Razi-Kazemi and Niayesh, 2020).

However, the trip coil current (TCC) measurement

is a widely available measurement which contains

information related to both the electrical and the

mechanical functionalities of an HVCB (Chen

et al., 2021).

A typical trip coil current measurement is il-

lustrated in Fig. 3. The TCC measurement is a

reading of the current through the coil in the trip

circuit of Fig. 1 versus time. The coil current has

a specific characteristic signature and changes in

the signature can signify issues with the HVCB.

Parameter A with current I1 and time t1 is associ-

ated with the charging of the trip coil. The location

of parameter A can be used to assess the onset of

failure mechanism 1. Parameter B with current I2
and time t2 is associated with the movement of

the armature which activates the trip latch. It can

be used to assess failure mechanisms 2, 7 and 10.
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The overall noisiness of the TCC measurement

can be used to evaluate the occurrence of failure

mechanisms 11 and 12.

Fig. 3. Typical trip coil current measurement.

4.2. Maintenance records

Maintenance records contain useful information

related to physical checks of a component which

can be used to update the health index model.

TSOs keep detailed maintenance records but usu-

ally do not incorporate this information into the

health index model. Maintenance records can be

used to assess failure mechanisms 3, 5 and 13.

4.3. Operation records

The overall operation of the system can be used

to assess the health of a single component. For

example, when HVCBs are triggered by the TSO,

the response time, ability to switch and the asso-

ciated voltages and currents are monitored. This

information about the HVCB operation can be

used to assess its health. Operation records can be

used to assess failure mechanisms 4, 6, 9 and 14.

4.4. Other data

Any other sources of information that can be used

to assess the occurrence of failure mechanisms

should be put to use. Other sources can include

indirect indicators of component wear such as age

(Cole and Macarthur, 2019). The failure mech-

anism related to other data in our health index

model is the temperature data of the operating

mechanism in failure mechanism 8.

5. Health index model

A conventional health index model is depicted in

Fig. 4. Conventional health index models typically

compare corresponding condition data between

time intervals. The change in the condition data

is associated with the amount of component wear

and a score is assigned. This scoring process is

conducted for all N condition data where they

are then multiplied by a weight. The weight given

to each condition data is relative to how much

the condition data reflects the overall health of

the component. However, with limited statistics

on power system component failures due to their

long lives and the practice of preventive retirement

(Toftaker et al., 2022) it may be difficult to decide

on the level of importance of each condition data.

Fig. 4. Conventional health index model.

The proposed health index model in this pa-

per based on failure mechanisms is illustrated in

Fig. 5. In this model the evaluation team analyses

each failure mechanism FMN against all the rel-

evant condition data and uses their expert judge-

ment (EJ) to determine an expert judgement score

(EJS).

Fig. 5. Health index model based on failure mecha-
nisms.

The EJS is a score derived by the evaluation

team based on the signs of the failure mechanism

occurring. The EJS grading scale proposed in this

paper is shown in Table 2. The EJS is then multi-

plied by the RPN for each failure mechanism. The

RPN is used to justify the relative weighting of

each failure mechanism. The results are summed
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for each failure mechanism and then normalized

to provide a single health index.

Table 2. Proposed scoring system

for the evaluation of failure mecha-

nisms based on evidence.

EJS Description
1 Almost certain indication
2 Moderate indication
3 Small indication
4 No indication

The RPN is conceptually equivalent to the

weight and the EJS is conceptually equivalent to

the score of a conventional health index model.

Since the RPN number for each failure mech-

anism in Table 1 is used as a weighting factor,

the fraction of the health index that each failure

mechanism accounts for is its RPN divided by

the sum of all RPNs. Table 6 groups the failure

mechanisms into the categories of condition data

that they can be detected by.

Fig. 6. Condition data and their proportion of the
health index.

Six failure mechanisms, which comprise 47%

of the total weight of the health index, can be as-

sessed with the use of condition monitoring data.

These failure mechanisms are 1, 2, 7, 10, 11 and

12. Three failure mechanisms, which comprise

25% of the total weight of the health index, can

be assessed with the use of maintenance records.

These failure mechanisms are 3, 5 and 13. Four

failure mechanisms, which comprise 27% of the

total weight of the health index, can be assessed

with the use of operation records. These failure

mechanisms are 4, 6, 9 and 14. One failure mech-

anism, which comprises 1% of the total weight of

the health index, can be assessed with the use of

other records. This is failure mechanism 8.

6. Case study

A case study was conducted on a fleet of HVCBs

(Grant, 2023). The available condition data for the

HVCB fleet were trip coil current (TCC) mea-

surements. The TCC measurements allow for the

assessment of failure mechanisms 1, 2, 7, 10, 11

and 12. The rest of the failure mechanisms were

assumed to have a perfect score for all HVCBs

rather than taken out of the indices. This means

that the HI scale in our case in practice starts

at 53% and the condition data determines the

remaining 47% as per Fig. 6. The TCC measure-

ments for the 14 HVCBs are shown in Fig. 7. Even

though these 14 HVCBs are of the same model

type, the measurements have different heights and

lengths. This highlights the need for methodolo-

gies that can evaluate a health index based on ex-

pert judgement rather than only from the amount

of deviation from the characteristic curve, which

is used in conventional health index models such

as Jahromi et al. (2009). The evaluation team

would be responsible for completing the FMECA

and also assigning the EJS for each failure mech-

anism from the condition data. However, in this

case study the authors acted as the evaluation

team.

Fig. 7. Case study TCC data set.

Fig. 8 shows a plot of the health indices for the

HVCB fleet vs calendar age. We can see that there

is no evidence in the data of a link between in-

creasing chronological age and deteriorating com-
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ponent health. This confirms the need for models

which can calculate the health index based on

condition data. The correlation coefficient for this

small data set was 0.396.

Fig. 8. Health index vs calendar age.

A demonstration of how the health indices were

calculated can be found in (Grant, 2023). HVCB

7 had the highest ranking with a calculated health

index of 95 %. The TCC measurement for HVCB

7 is shown in Fig. 9.

Fig. 9. Highest ranking HVCB.

HVCB 10 had the lowest ranking with a calcu-

lated health index of 71 %. The TCC measurement

for HVCB 10 is shown in Fig. 10.

To assess the onset of failure mechanism 1, the

elapsed time since the last TCC measurement was

evaluated. A longer interval between tests was

taken as a greater possibility that failure mech-

anism 1 had occurred. HVCB 7 had a relatively

shorter time and HVCB 10 had a relatively longer

time since the last TCC measurement was taken,

and as such they received an EJS of 4 and 1

respectively. System operators may decide to con-

Fig. 10. Lowest ranking HVCB.

duct regular TCC measurements to remove the

uncertainty associated with failure mechanism 1.

When considering failure mechanisms 2 and 7

the latch time and TCC signature were considered.

The latch time was taken from parameter B and

any anomalies that occurred between parameters

A and B were noted. HVCB 7 received an EJS

of 4 since the signature was smooth between pa-

rameters A and B and the latch time was within

specifications. However, HVCB 10 received an

EJS of 1.5 since the signature contained anomalies

between parameters A and B and the latch time

took slightly longer.

Failure mechanism 10 is associated with an

unsecured latch. An unsecured trip latch can cause

the failure mode of the HVCB to trip when not

called for. When considering failure mechanism

10 the time to open the circuit was considered. The

specified opening time for the HVCBs is 35 ms

so opening times a lot quicker than 35 ms could

indicate an unsecured trip latch. The limits were

chosen to demonstrate the methodology; more

data would be needed to revise the limits in future

studies.

Failure mechanism 11 was assessed based on

the presence of current spikes in the data. If a

spike was present an EJS of 1 was assigned and

4 otherwise. HVCB 7 received an EJS of 4 since

no spikes were present and HVCB 10 received an

EJS of 1 due to the spike at the end of the TCC

measurement possibly indicating a stray current.

Failure mechanism 12 was scored based on the

noisiness of the TCC measurement. HVCB 7 re-

ceived an EJS of 4 and HVCB 10 received an EJS

of 2. Future work would focus on quantifying the
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noisiness in terms of signal-to-noise ratio.

7. Conclusion and further work

A health index model based on failure modes,

effects and criticality analysis (FMECA) was pre-

sented and analysed for HVCBs. The FMECA

was used to calculate an RPN which is used as

a weighting factor for each failure mechanism

within the health index. The FMECA also high-

lighted what condition data can be used to detect

each failure mechanism. The relevant condition

data was then assessed and an expert judgement

score (EJS) was derived based on the data. The

EJS and RPN were then used to calculate a com-

ponent health index.

We found in this paper that when assessing

the health index of an HVCB based on failure

mechanisms 47% of the health can be assessed

with condition monitoring data, 25% from main-

tenance data, 27% from operation records and 1%

from other sources. We also found during our

investigations that the coil current data, even for

the same HVCB type can have a wide range of

shapes, meaning that there is an overlap between

healthy and faulty responses. Finally, the results

demonstrated the need for approaches which can

quantify the health of a component from condition

data rather than inferring the health from chrono-

logical age.

Further work will focus on how the health in-

dex can be converted into a condition-dependent

failure rate.
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