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Orthogonality in DoE favors non-correlated effects and minimizes their confidence intervals. However, accidental
or deliberate deviation from orthogonality is often possible on the one hand, and sometimes even desirable within
reliability demonstration testing. Based on an investigation of orthogonality deviations (errors in factor levels) with
respect to performance quantities such as a priori power and scaled prediction variance, the result of a study for DoE
costs is put into perspective in this paper. In the course of this, the accuracy of regression models in CCDs as well
as their likelihoods of detecting them correctly are compared to a cost model, which ultimately gives orthogonality
deviations a price tag. Thus, favorable combinations of design modifications regarding orthogonality are measured
within a trade-off.

Keywords: design of experiments, reliability engineering, cost modelling, test efficiency, orthogonality deviations,
statistical power analysis, response surface methodology

1. Introduction

In order to understand industrial applications

holistically in terms of their (linear, polynomial)

characteristics, testing is ordinarily required to

quantify effects and interactions of influencing

variables on target quantities. This applies to tech-

nical functionalities, performances and reliability

of products, cf. Bertsche (2008). Design of Exper-

iments (DoE) and Response Surface Methodol-

ogy (RSM) here address challenges within testing

intents in great detail. Designed test plans and

combinations of factor settings (controlled inputs)

are utilized to entirely investigate significant ef-

fects and interactions regarding an observation

objective (response, output), enabling their anal-

ysis and quantification in a statistically validated

and highly efficient manner Montgomery (2020).

For instance, Central-Composite Designs (CCDs)

determine testing procedures forming standard-

ized test sequences commonly in use within in-

dustrial applications and reliability demonstration.

Especially for a case where characteristics and the

volatility of the target variable to be investigated

are unclear - not to mention the requirements for a

probably dedicated optimal test design as an alter-

native - CCDs are commonly used in the transfer

of statistics knowledge and in engineering appli-

cations. In the course of this a key focus is usually

placed on statistical quantities of the test design.

In order to guarantee evaluability, orthogonality
in the design matrix is predominantly favored

preventing correlations in the effect determination

and minimizing confidence intervals of estimated

coefficients (effects). Nevertheless, at times the

actual implementation of test designs may favor

deviations from orthogonality all by itself, which

may result from quite pragmatic reasons of ad-

justability issues for factors in terms of control

engineering, cf. Donev (2004), or for the case of

a sequential method, some test runs cannot be

realized unexpectedly at all, cf. Box and Wilson

(1951); Johnson et al. (2011). Assuming this to

be prevented, certain efforts are usually required

along with general needs for stochastic modeling,

but also conflict with economic efficiency being a

top priority within industrial implementation. On
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the other hand, this may alternatively be assumed

beneficial - as testing often generates costs that are

only favored economically as long as proof can be

provided. Deliberately permissible inaccuracies in

instrumentation or omitted test runs may offer a

cost advantage which could even be desired, tol-

erating certain deviations in orthogonality. Effects

of such precautions on the model quality of regres-

sion equations describing the investigation objec-

tive may be partly examined already, cf. Arndt

et al. (2022); Mell et al. (2022). Complementary to

this a generally applicable systematic approxima-

tion quantifying the new overall mandatory bud-

get, not to mention potential savings, is missing

so far.

With this work a profound cost model is intro-

duced and consequences of experimental design

manipulations are shown in the balance sheet. The

basic principles of effect estimation, exemplary

options for orthogonality deviation and a break-

down of the considered cost sources are intro-

duced. Finally, the cost model and implemented

manipulations are then merged so that a relative

budget change can be assigned to deviations in test

power and model quality for the estimated fit.

2. Test Design Performance Indicators

Within a pragmatic approach, to define appropri-

ate parameters for the evaluation in RSM, the eval-

uation metrics regression quality (cf. Sec. 2.1),

power (cf. Sec. 2.2) and prediction quality (cf.

Sec. 2.3) are established as characteristic values

for the performance. Therefore, they are briefly

described below and implemented as indicators

for the goodness of experimental designs.

2.1. Test Designs and Regression
Modeling

By employing CCDs, linear as well as second-

order models can be experimentally assessed and

estimated, if it is a matter of describing y as

an output based on i = 1, . . . , n observations

in a system with main effects, interactions (and

quadratic terms), cf. Montgomery (2020).

These can be linearized (multiple linear regres-

sion) for k < n regressor variables specified by

βj , j = 0, 1, . . . , k regression coefficients, while

leaving ε as a random error:

y = β0 +
k∑

i=1

βixi +
k∑

i=1

βiix
2
i

· · ·+
∑∑

i<j=1

βijxixj + ε.

(1)

For p = k+1 , in matrix notation, the estimates

of βj remain to be calculated via

y = Xβ + ε, (2)

where y represents an n×1 vector of observations,

X is an n× p matrix with the levels of the regres-

sor variables, β is a p × 1 vector of regression

coefficients and ε is taking into account n × 1

random errors to the following:

β̂ =
(
XTX

)−1
XTy. (3)

Note that H = X
(
XTX

)−1
XT is known

as the hat matrix, whose properties decisively

determine the quality of fitting the observations

to a vector of estimated values ŷ = Hy. For

standardised levels (test run settings) of the re-

gressor variables xT = [1, x1, . . . , xk] the fitted

regression model then results in

ŷ = xT β̂. (4)

The effectively determined regression coeffi-

cients, actually corresponding to estimated effects

of factor (regressor variable) level variation, are

thus determined at this stage defining the quality

of fit. Given that the error ε ∼ NID(0, σ2I) is

normally and independently distributed, here e.g.

maximum likelihood estimation (MLE) estimates

of β and ordinary least squares (OLS) estimates

according to Eq. (3) are equivalent, see Mont-

gomery (2020). In the further analysis the error

terms therefore are expected to be NID.

So, if the processing of data and the estimation

algorithm for the coefficients should detect devi-

ations in effect estimation that originate from the

(manipulation associated) setup of the experimen-

tal design, design-related modeling quality can be

captured.

2.2. Power of Effect Estimation

In order to evaluate effects possibly caused by

factor-level variation, the principles of hypothesis
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testing are applied to β̂. Here appropriate hy-

potheses are defined as

H0: ∀j : βj = 0 ; H1: ∃j : βj �= 0. (5)

Assuming that a change in y could also occur

variance-based without varying the factor levels,

H1 may be incorrectly assumed to be true - the

type-I error prevails and determines the risk of

making a false positive decision. H0 would there-

fore have to be rejected if at least one of the k re-

gressor variables xi contributed a significant effect

to the model output y. In contrast, the type-II error

describes the probability or risk βp of making a

false negative decision to reject an effect (coeffi-

cient) that actually and truly exists while adopting

H0. In order to correctly decide this with the tol-

erance to a significance level α on residual error

probability, the observation variances are to be

determined by means of ANOVA. Here the mean

error- and regression- sum of squares are utilized

to calculate the statistic F0 = MSr/MSe, result-

ing in the rejection of H0 if F0 > Fα,k,n−k−1

(alternatively if p < α). However, as H1 is

accepted, it remains to be further evaluated by ad-

equacy checking whether the identified significant
coefficients in modeling generate a satisfactory

estimate with respect to the dataset. Observing

further the compliment to βp, the probability re-

sults to P(reject H0 | H1 is true) as

power = 1− βp, (6)

and therefore to the chance of correctly detect-

ing an existing effect (coefficient). Even a priori,
power can be considered as a quality measure fa-

voring successful identification of desired effects.

2.3. Predicting New Observations

In industrial experimentation the regression fit of

Eq. (4) is certainly utilized to predict new system

responses, keeping the precision of the predic-

tion quite crucial: what model quality is achieved

for the committed test budget - misestimation? It

seems to be relatable that for high-cost specimens

of low batch sizes, this is a sensitive aspect.

If x0
T = [1, x01, . . . , x0k] as a particular in-

vestigation point is to be considered respecting

NID, the prediction value y0 comes along with a

prediction variance in the prognosis of ŷ(x0) =

x0
T β̂. Based on the design size N (total amount

of test runs), thus the scaled prediction variance

(SPV) results in

SPV(x0) =
NVar[ŷ(x0)]

σ2

= Nx0
T
(
XTX

)−1
x0. (7)

Scaling the variance by N and σ2 allows to

evaluate the metric on an per observation basis

and scale-free. Moreover, it is quite important for

the experimenter that the variance of prediction is

reasonably stable within the design space and that

its maximum is comparatively small. To achieve

this, for the instance of a second-order design,

CCDs are arranged rotatably so that all nS ax-

ial and nF factorial runs are on a sphere. For

a rotatable design this determines the Euclidean

distance to the center of the investigation area of

αD = 4
√
nF for axial test runs nS while the radius

of the factorial sphere equals αD =
√
k, cf. Myers

et al. (2016). Further, the prediction variance is

stabilized by the amount of center runs nC . A

fraction of the recommended number, for instance

1 instead of 5, multiplies Var[ŷ(x)] at the design

center while nC = 0 turns XTX into singular,

maximizing Var[ŷ(x)].

3. Test Design Orthogonality in
Industrial Experimentation

Orthogonality as a requirement in experimental

design determines the column setup of the design

matrix and is given as the sum of products of

entries xij = {−αD,−1, 0, 1, αD} in any two

columns equals zero. As a result, it is ensured that

the terms are not correlated and that the effects

can be analyzed independently to each other. As

indicated in Sec. 1, prevailing orthogonality would

imply that Var[ŷ(x0)] according to Eq. 7, in par-

ticular, the confidence intervals of the estimated

coefficients through Var[β̂] are minimized. That

is when the diagonals of XTX are maximized

while its off-diagonals equal zero. Orthogonality

in test design is thus easily achieved, provided

that CCDs in use are encoded and implemented as

specified with respect to leveling and replication.
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3.1. Orthogonality Deviations

Given this context, deviations from orthogonality

are to be considered consciously. Being the most

accessible methodology in the industry, CCDs are

simply part of the application standard. While

implementation, the experimenter encounters ac-

cruing experimental costs (test budget), the pecu-

liarities of the object system (system characteris-

tics) and the challenges of instrumentation being

very likely to occur within test setups (control and

regulation). Each of these challenges may lead to

issues in implementing true orthogonality, if not to

certain orthogonality deviation in terms of typical

setting and measurement errors. In this way, an

experimenter may face the concerns of: variance
in test setup adjustments - random disparities due

to measurement or control instruments; shifts in

parameter settings - errors based on a systematic

offsets in setup; and omissions of test runs/points -

as single test runs may unexpectedly not be realiz-

able at all. For their simulative implementation, a

nonconforming system behavior can be generated

using a polynomial equivalent to Eq. 1, where the

representation of an independent (measurement)

error, a certain amount of variance, should be

taken into account by εβ, εyi ∼ NID(0, σ2I)

- as Donev (2004); Ardakani et al. (2011); John-

son et al. (2011); Arndt et al. (2022); Mell et al.

(2022) have previously thought of. Consequently,

this creates virtual test results that are attributed

to the relevant test designs. The simulation ap-

proach upon which this work is based is therefore

described next.

3.2. Statistical Study Approach

Complementary to a comparison of impacts to

test design characteristics on response prognosis

(prediction variance, cf. Eq. 7), a simulation for

effects by measurement equipment needs to be

performed separately. This alone is to capture

estimation and measurement errors utilizing met-

rics such as stated in Sec. 2. Therefore a two-

dimensional RSM is chosen, testable virtually

as the Default Model by orthogonal and non-

orthogonal CCD structures. For both a measure-

ment error εyi
and an effect error εβ affecting

the coefficient values (effects) βj , σ is numeri-

Default Model Setup εβ

yi

β̂MCSPV

CCD

specific

Regr.

Analysis

CCDs

- orthog.

- non-ort.

+εyi

p
MC

power

Fig. 1. MC Simulation Study Approach: CCDs (or-
thogonal, non-orthogonal) analyzed regarding SPV, es-
timated regression coefficients β̂MC , deviations �βj
and power.

cally superimposed. As this is exceedingly case-

specific, to illustrate one possibility among many

and for the sake of comparability these properties

are set as stated in Table 1. In line with this, mul-

Table 1. Coefficients and Standard Deviation for

Default Model Setup

β0 βj σ

10 10 5

tiple linear regression is then utilized to capture

an averaged estimate for the coefficients using

OLS, MC = 1e5 Monte Carlo iterations and non/-

orthogonal CCDs, which is intended to represent

a numerically averaged general result. As part of

the same process the power is calculated as the

rate recorded via MC for each p < α case per

coefficient. Likewise, for each MC iteration, the

cost level as well as the estimated values of the

coefficients are calculated and arithmetically av-

eraged. The simulation process thus corresponds

to the scheme according to Fig. 1.Correspond-

ing to a standard CCD as shown in Fig. 2, the

orthogonal version and derivative orthogonality

manipulations according to Section 3.1 capture

the deviations in coefficient estimations and in

SPV (orthogonal vs. manipulated). An illustration

of realistic practical arrangements is provided by

following deviations:
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• variances [0, 10], uniform dispersion ranges

around each star point - representing control

or measurement errors in critical conditions of

factor-level combinations;

• shift [1, 4
√
nF ], varying aD of the star points

(0,aD) and (−aD,0), as these should presum-

ably take the lowest and highest value in run-

time - representing systematic offset;

• omission of test runs, mapped to the deletion

of the star points (0,aD) and (−aD,0) or to the

variation of repetitions nC = [0, 8] in (0,0) - to

illustrate the omission of replications or critical

factor combinations/runtimes.

4. Design of Expe-nses

Test beeing performed appropriately to design

specifications in DOE, a large number of cost

factors are incurred that have to be listed in the

balance sheet. Even with a fixed number of test

runs and replications, these are strongly dependent

on - above all - runtimes, especially speaking of

end-of-life (EoL) reliability testing. Notably, for

comparability purposes, it is assumed that such

tests are performed sequentially and individually.

Nevertheless, a reasonable structuring of the costs

is practicable and links between runtime and en-

ergy demand can be defined in relation to time-

based and power-based cost aspects. Thus, if costs

are to be estimated generically for a relation-based

assessment and independent of the specimen type,

Montgomery (2020) may allow a cost analyses

based on his multiple examples as follows.

4.1. Cost Analysis

According to Sec. 3.2, the relative cost change

respecting the best performable design is cru-

cial. Therefore, it is consistent to equate an ideal

implementation with maximum achievable preci-

sion, realization completeness, and protracted run-

time/energy as charging the highest conceivable

overall costs (C∑) (best instrumentation setup,

perfect control equipment, complete runtimes,

etc.). However, absolute costs of specimens, re-

gardless of their actual cost amount, do not need

to be included in a relative estimate since they

are consistent. Thus,C∑ comprises three main

domains, each of which can be detailed again:

Fig. 2. Setup of a k = 2 factor orthogonal CCD with
x1 and x2, distance of axial runs αD = 4

√
nF .

• size of testing CS ,

– staff CO;

– auxiliary material CH ;

– energy costs CE ;

– maintenance cost CM ;

• test equipment CT ;

– test bench hardware CB ;

– measurement equipment (quality) CI ;

– control technology (quality) CC ;

• ambient conditions CA;

– laboratory condition costs CL.

Within the scope of this work, price ranges for

low- to high-quality technical test equipment and

a representative, exemplary cost assumption for

scaling cost factors are determined on the basis of

research into the European market (it should be

mentioned here that the respective absolute val-

ues are insubstantial, exemplary, and interchange-

able for relationship-based modeling). At any rate,

within this model the most distinctive orthogo-

nality deviation is assigned to the smallest iden-

tified hardware costs in each case: low-cost test

conditions equal strong deviations from perfect

test plans. In order to model their relationships

as well, two additional steps are also performed:

cost source interactions are captured using links

identified by creative methods such as the design

structure matrix (DSM) to even track a passive

cost change in the presence of correlation; it is as-

sumed that low stress levels resulting from the test

factors lead to higher run times and thus higher

expenses. To account for the latter, each test run is

assigned a percentage runtime reduction relative

to the most time-consuming run in an oriented
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∑ ∑

design-specific overall costs

CCDs (ortho./non-ortho)

CL

CT

CB

CI CC

CA
+ +

CS

CM

ti
CE

CH
CO

+

∑
MC

∑

C∑

Fig. 3. Cost model to calculate overall costs C∑ as
a function of test design implementations (orthogonal,
non-orthogonal), identified cost factors and random ex-
perimental runtimes ti.

manner and iterated over MC to an average. A

representative maximum runtime is specified ex-

emplary. This implies that, for instance, (−aD,0),

(0,−aD) and (-1,-1) are in a time intensive range,

whereas (aD,0), (0,aD) and (1,1) represent short

runners. Everything in between has a σ-random

EoL runtime that impacts CE , CM , CH and CO.

This particularly takes into account that the omis-

sion of a long-runner also realizes greater savings

in CS , respectively energy, staff and maintenance

costs. Together with the cost structure, this is

shown in Fig. 3. With respect to the orthogonality

deviation mentioned in Sec. 3.2, thus:

• maximum variance for star runs corresponds to

the least expensive equipment represented in

CT and CA;

• shifts of factor combinations to low stress

ranges correspond to increased runtime and

higher operating costs in CS ;

• the omission of test runs corresponds to the

omission of single CS with a redistribution of

per-run costs by keeping same fixed costs CT .

As a result, it is therefore possible to calculate the

overall cost of the test design implementation for

each orthogonality deviation and to relate these to

C∑ of ideal orthogonality.

5. Balancing Sheet on Orthogonality

According to the performance parameters speci-

fied in Sec. 2 a relative cost change is respectively

compared to the change in percentage points (pp)

of power, β̂ and SPV|r=1 for each orthogonality

deviation. A tolerance limit of 5pp is taken into

account in all evaluations; smaller values are thus

not considered or displayed graphically. In the

first instance, the influence of variance to star

points can be analyzed comparing Fig. 4. Based

on present cost modeling, the results show C∑

savings of 5pp. This can be explained with the

underlying cost structure of the test instruments.

From a qualitative perspective, low gray cost bars

and flat deviation curves are thus very desirable

for the present and other diagrams. While the

SPV|r=1 exemplified in the sphere with Eucl.

distance (r = 1) remains constant, only the

power values for the coefficient of β0 show a

deviation of approx. 7pp on average. Key findings:
Under the assumed instrument costs, toleration of

a scatter range > 5% for star runs decreases C∑

by approximately > 5%, while the accuracy in

the prediction as well as the certainty for effect

detection remains largely unaffected.

Considering the replication amount of the cen-

ter point nC (Fig. 5), the SPV|r=1 is minimized

at nC = 3. nC < 5 decreases the estimated costs

Fig. 4. Performance Indicators and overall costs sub-
ject to varying global, uniformly distributed scattering
of star points: Percentage deviation �power of β0;
C∑; design-based SPV|r=1 - normalized to k = 2,
nC = 5 CCD.
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Fig. 5. Performance Indicators and overall costs sub-
ject to varying nC : Percentage deviation �power per
coefficient; percentage deviation of cumulative coeffi-
cient amount �β = |β̂MC − βj | (black bars); C∑;
design-based SPV|r=1 (SPV|nC=0 = NaN) - normal-
ized to k = 2 CCD, nC = 5 as default.

by > 5pp compared to the reference, although the

power of the average to the system response β0

decreases by > 12pp, too. Concurrently, nC > 5

steadily enhances C∑ starting from 104% while

not improving the indicators in any way. With

nC ≤ 3, the power of quadratic terms also

deviates to the point where, if center points are

completely omitted (nC = 0), up to 83pp. Here

even the absolute value of the coefficient estimates

βj in total starts to deviate increasingly (black
bars). Key findings: The realization of nC = 3

is quite reasonable, considering here: up to 12pp

C∑ may be saved, SPV is minimized, the error

probability does not increase more than 20pp for

β0; attempting ≤ 5% power deviation on the

other hand results in an unreasonable increase in

cost for nC > 5.

Compared to this, the axial shifts of the star

points (0, αD), (−αD, 0) do not appear to strongly

affect SPV|r=1, nor C∑, nor the coefficient de-

viation, cf. Fig 6. Accordingly, the overlaid MC

average has a more dominant effect with respect

to runtime costs, keeping C∑ nearly constant.

It is only the power values of the intercept and

the square parts that vary occasionally more than

5pp, which is why only these are displayed. One

Fig. 6. Performance Indicators and overall costs sub-
ject to varying αD shift in axial runs: Percentage
deviation �power per coefficient; C∑; design-based
SPV|r=1 - normalized to k = 2, nC = 5 CCD.

should also note that with orthogonality deviations

at selected star points, the performance indicators

behave complementary to each other as expected.

In any case, deviations in the absolute value of

the model coefficients are not found here. Key
findings: Star point shifts are generally manage-

able and optimize the SPV|r=1 with increasing

proximity toward the forecast point.

In the last instance, the effects of omitting the

previously addressed star points are investigated

(Fig. 7). In each case, a substantial decrease in

C∑ is observed, which may be attributed to the

assumed distribution of run times and thus test

duration costs (CS). The SPV|r=1 increases by

17pp to 38pp, while especially the power values

of the quadratic coefficients βx11,x22
strongly de-

crease and that of the intercept β0 varies the least.

As expected, the power values behave in a com-

plementary manner between the two omissions

(0, αD) and (−αD, 0), but an absolute deviation

of the coefficient values �β is not observed here

either. Key findings: While omitting (particularly

expensive) starpoints may have a strong saving
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Fig. 7. Performance Indicators and overall costs
subject omission of axial runs: Percentage deviation
�power per coefficient; C∑; design-based SPV|r=1

- normalized to k = 2, nC = 5 CCD.

effect, one must be aware that the effect detection

for quadratic terms can be affected strongly and

the variance in the prediction is shifted.

5.1. General Findings

From the accounting in Sec. 5, the following in-

sights emerge under given assumptions about the

system and cost modeling for the specific given

model: a variance in star points of up to 10%

has no noticeable effect on the performance indi-

cators and can be almost freely accepted; when

implementing center point replications, a sharp

balance must be made between cost effort and

model quality: the power and model quality may

decrease, but appealing cost benefits could result;

the manner of star point realization must be eval-

uated depending on the desired model terms.

6. Summary and Conclusion

With this work, effects of orthogonality devia-

tions in CCDs are presented and compared from

statistical as well as economic points of view.

Therefore, a study approach virtually creating and

testing of a prescribed system with manipulated

CCDs as well as a cost model is presented. The

results of this study are generalized from the av-

erage of Monte Carlo iterations and compared.

This allows manipulated orthogonality at CCDs

(default: k = 2, nC = 5) to be given a quality

tag via the presented performance indicators as

well as a price tag via the cost model. Although

the results deliberately depend on the individual

assumptions (evaluation point of the SPV|r=1 as

a metric, variances, predetermined effects, cost-

structure and -dimensions), the results thus show

plausibly evaluable phenomena and allow a tar-

geted assessment of more efficient experimental

designs for industrial applications.
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