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This study advocates the utilization of a parallel neural network (PNN) architecture for the estimation of remaining 
useful life (RUL) of bearings. The use of conventional machine learning and deep learning techniques has been 
inadequate in terms of accuracy and computation time, because of huge input data sizes and the time-dependent 
nature of the output. To address this limitation, the PNN architecture incorporates multiple parallel processing paths 
with multiple input neurons that take in data from condition detectors of mechanical machines and output neurons 
that predict RUL. The PNN structure provides better accuracy and computation time by efficiently handling vast 
amounts of data and integrating both spatial and temporal information simultaneously. Additionally, time-
transformer and recurrent neural network (RNN) are used to handle complex time series data. Improvement 
methodologies like positional encoding with self-attention mechanism and ConvLSTM neural network are utilized 
to leverage multidimensional time-frequency data to process spatial and temporal dependencies present in the 
extracted features, further increasing model's efficiency. A case study is conducted on XJ-SY rolling element-
bearing dataset to validate the proposed methodology, where PNN performed exceptionally in terms of accuracy 
and efficiency. It is concluded that PNNs exhibit potential for predicting RUL of bearings and can be applied to 
other machinery types.  
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1. Introduction 
Condition-based maintenance (CBM) is a widely 
accepted maintenance strategy that focuses on 
status monitoring of physical assets to implement 

maintenance actions only when the asset's 
performance is unacceptable. This approach 
empowers industries to conserve resources and 
reduce maintenance costs. Ali et al., (2022). 
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The effectiveness of CBM depends on 
implementing accurate data monitoring, fault 
detection, diagnosis, and prognosis processes, 
along with precise estimation of the Remaining 
Useful Life (RUL) for maintenance decision-
making. Machinery degradation and failure can 
result in substantial economic losses and safety 
hazards. Therefore, Accurate prediction of the 
RUL of machinery components is crucial. Rolling 
element bearings are the most significant element 
in rotating machinery, and also are a common 
cause of operation failures. Heng et al., (2009). 
Hence, precise RUL prediction for the bearings 
can obviously improve the operation safety and 
overall reliability of the rotating machinery.  

RUL prediction approaches are 
categorically divided into model-based and data-
driven. Model-based methods use prior expert 
knowledge and model failure mechanisms to 
mathematically model equipment degradation. 
However, to mathematically model the machinery 
efficiently is a difficult task, when the 
components are complex, resulting in 
simplifications to the key attributes, which 
compromises the model accuracy. Alaswad et 
al.,(2011). Alternatively, data-driven approaches 
rely on historical run-to-failure data to estimate 
the RUL using different machine learning 
techniques. Lei et al., (2018).   

To this end, various machine learning 
(ML) techniques have been proposed for RUL 
prediction, including deep belief networks (DBN) 
by Peng et al., (2018), convolutional neural 
networks (CNN) by Ren et al., (2018), long short-
term memory neural networks (LSTM) by Jiang 
et al., (2019), attention mechanism-based models 
(Jiang et al., (2019); Chen et al., (2020)), and 
boot-strap fusion technique by Huang et al., 
(2021). These techniques have shown promising 
results in RUL prediction for various machinery 
components, such as bearings, lithium-ion 
batteries, aircraft engines, and wind turbines .Li et 
al., (2022). Despite the success of these 
techniques, traditional ML models have certain 
limitations because big data input is complex, and 
also time dependent. This paper is aimed to solve 
these two problems by employing a parallel 
neural network structure processing a lot more 
data simultaneously. And also using the models 
such as time-transformers and ConvLSTM neural 
networks which map the non-linear time-
dependencies from the input data effectively.  

In this paper, a two-stage prognostic 
approach for RUL prediction of rolling element 
bearings using a PNN structure with Time 
transformers and ConvLSTM neural network is 
proposed. This approach aims to overcome the 
limitations of traditional ML models and improve 
the accuracy and efficiency of RUL prediction. A 
case study is also conducted on rolling element 
bearings to verify the effectiveness of the 
proposed methodology. 

2. Theoretical Background  
In this section, first deep learning models of RNNs 
and Time-Transformers are reviewed briefly. 
Then, specific improved methodologies for both 
approaches naming: ConvLSTM neural network, 
positional encoding integrated with self-attention 
are introduced. These networks can effectively 
handle highly complex and non-linear time-series 
data, making them suitable for capturing patterns 
and dependencies to predict the RUL of bearing 
with higher accuracy. 

2.1.Recurrent neural network 
Recurrent Neural Networks (RNNs) are designed 
to incorporate sequential dependencies in the 
data, making them an effective approach to 
handle such data where input data in later stages 
of the time are highly dependent on previous 
events present in the data. RNNs process 
sequential data by propagating information step 
by step using a loop that enables information to 
persist over time. Although, RNNs struggle with 
long-term dependencies due to vanishing 
gradients, to avoid this hurdle LSTM (Long 
Short-Term Memory) neural network were 
introduced which overcome this with a gating 
mechanism that selectively controls the flow of 
information and gradients through the network. 

2.1.1.Convolutional long short-term memory 
ConvLSTM is a special case of LSTM neural 
network that integrates convolutional layers into 
the LSTM structure. The ConvLSTM network is 
particularly useful for processing 
multidimensional sequential data. It captures 
spatiotemporal patterns present in feature images 
utilizing the convolutional operations. The 
convolutional layers in the network help capture 
spatial dependencies within the input data, while 
the LSTM layers help capture the temporal 
dependencies. Ma and Mao (2020). 
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The ConvLSTM structure can be 
represented mathematically as follows: 
 1 1( * * ) t xi t hi t ci t ii W x W h W c b�

� �
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where tx  is the input at time step t ,  1th �  is the 

hidden state at the previous time step, 1tc �  is the 

cell state at the previous time step, ti  , tf  ,  to  
are the input, forget, and output gates 
respectively, � and � represent sigmoid function 
and element-wise multiplication, and W and b   
are the learnable parameters of the network. 

The Fig. 1 illustrates the architecture of 
a ConvLSTM network, which consists of 
convolutional layers and LSTM units. The fed 
input data is processed using convolutional layers 
to extract the spatial features. The resulting 
feature maps are then fed into the LSTM 
component of the network to map the temporal 
dependencies over time.  
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Fig. 1. ConvLSTM neural network structure 

2.2.Time transformers 
Time Transformers architecture uses self-
attention mechanisms to model temporal 
relationships in sequential data. 

The Time Transformer architecture can 
be represented mathematically as follows: 
 t q tq W x�  (6) 

  t k tk W x�  (7) 

  t v tv W x�  (8) 
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where tx  is the input at time step t , tq , tk , tv  
are the query, key, and value vectors respectively, 

ta  is the attention vector, 
q

W , 
k

W , 
v

W , 
o

W  are the 

learnable weight matrices, and kd  is the 
dimensionality of the key vectors. 

2.2.1. Positional encoding and self-attention 
Positional encoding is used to incorporate 
information about the sequential ordering of the 
input data into the network architecture. This is 
achieved by adding fixed sinusoidal functions of 
different frequencies and phases to the input 
embeddings of the network. The positional 
encoding function can be represented 
mathematically as follows: 
 2 /

PE( , 2 ) sin( / 10000 )model
i d

pos i pos�  (11) 

 2 /

PE( , 2 1) cos( / 10000 )model
i d

pos i pos� �  (12) 
where pos is the position of the input element in 
the sequence, i is the dimension of the embedding 
vector, and 

model
d  is the dimensionality of the input 

embeddings. Huang et al., (2022). 
Self-attention is additional component of 

the Time Transformer architecture, which enables 
the network to selectively attend to different parts 
of the input sequence at different times. The self-
attention mechanism can be represented 
mathematically as follows: 

 Attention( , , ) ( )
T

k

QK
Q K V V

d
�  (13) 

where Q , K , and V  are the query, key, and value 

matrices, respectively, and kd  is the 
dimensionality of the key vectors. 

In the Time Transformer architecture, 
the self-attention mechanism is applied multiple 
times, using different sets of query, key, and value 
matrices in each layer. The output of each layer is 
then passed through a feedforward neural 
network, and residual connections and layer 
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normalization are applied to improve the stability 
of the training process. 

The structure of the time transformer is 
illustrated in Fig. 2. 
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Fig. 2. Time Transformer with positional Encoding 
structure 
 

3. Proposed Prognostics Approach 
The proposed technique in this paper 
encompasses the practice of a parallel neural 
network architecture that combines ConvLSTM 
and Time Transformer networks. The input to the 
ConvLSTM network is the time-frequency 
representations (TFRs) of sensor data which are 
extracted from the vibration signal by performing 
the Morlet continuous wavelet transforms over a 
sequence of the data, while the Time Transformer 
network takes in one-dimensional extracted 
features from the sensor vibration data with 
positional encoding and self-attention. 

3.1.Data acquisition and pre-processing 
In the case of bearing vibration data, the first step 
is to acquire the data from sensors installed on the 
bearing. The input consists of vibration data 
collected from bearings undergoing accelerated 
failure testing. Once the data has been acquired, 
the next step is to pre-process it to remove any 
noise and prepare it for use it for RUL prediction. 
Second step of proposed technique is to measure 
the first prediction time (FPT) of the dataset. FPT 
of the vibration signal is the point at which the 
fault in the signal occurs and the bearing moves 
from a healthy stage to the unhealthy degradation 
stage.  

In Fig. 3 the raw vibration signal of a 
bearing is displayed and the red dotted line 
represents the FPT in mins, which divides the 

healthy and degradation stage of the bearings. 
This is done by calculating the root mean square 
(RMS) of the signal. When the RMS of the signal 
deviates from healthy stage mean value by a 
magnitude of 3 times the standard deviation of the 
signal | | 3i� � �� �  at that point fault has 
occurred and all the data after that is taken for the 
analysis, which represent the degradation stage of 
the bearings.  

 
Fig. 3. FPT determination in the vibration time-series 
data 

3.2.Health indicator extractions 
After FPT calculation of the vibration signal the 
dataset in the degradation stage is converted into 
number of input samples using a sliding window 
and labelled with RUL from 1 to 0. In this 
approach the number of samples are set to 2048, 
it is worth noting that the after the FPT 
determination dataset for all the bearing are not 
same in length. But  a clever data augmentation 
strategy is employed, which uses the sliding 
window of size 1024 data instances to divide the 
rest of the dataset into same number of samples 
by variational stride for respective dataset. Which 
enables putting more focus on data where the 
degradation process is fast, but skipping the input 
data where redundancy occurs and the 
degradation of the bearing is slow. After 
acquiring the number of samples features 
extraction is performed. The details of the 29 
extracted features are provided in Table 1. 

Table 1. Detailed features used for neural network 
training 

Feature Types Feature Names 
2D-Time Frequency 
Domain 

1.Morlet Continuous 
Wavelet transform 

1D-Time Domain 
Statistical Features 

2.Root mean square 
3.Kurtosis 
4.Skewness 
5.Shape factor 
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1D-Time Domain 
Impulsive features 

6.Mean absolute value 
7.Minimum value 
8.Impulse Factor 
9.Crest Factor 
10.Clearance Factor 
11.Standard deviation 

1D-Time Domain 
Trigonometric features 

12.Standard deviation of 
inverse hyperbolic cosine 
13.Standard deviation of 
inverse hyperbolic sine  

1D-Frequency domain 
features 

14-29.Energies of sixteen 
band between 1hz and 
2000hz 

 

3.3.Parrallel neural network 
After the health indicator extraction of the 
features the inputs are fed in to the deep neural 
network. The ConvLSTM network is able to 
capture both spatial and temporal dependencies in 
the input data, making it well-suited for modelling 
2D TFRs. Meanwhile, the Time Transformer 
network are designed to model sequential data 
and can capture long-term dependencies between 
time-series features, frequency features and 
trigonometric feature which are all one-
dimensional input data. By combining the 
strengths of these two networks, the proposed 
architecture is able to effectively model the 
complex relationships between sensor data and 
predict the remaining useful life of industrial 
assets. 

3.4.Remaining useful life prediction 
In real-world circumstances, noise is present in 
the input data which results in uncertainty and can 
lead to inaccurate predictions. To address this 
issue, a Kalman filter is used to smooth the RUL 
predictions and improve their accuracy. 

The Kalman filter is a mathematical 
algorithm that uses a series of equations to 
estimate the state of a system based on noisy input 
data. The Kalman filter equations are given by: 
 | 1

ˆ ˆ ˆ| | 1 ( )k k k kxk k xk k K z Hx
�

� � � �  (14) 

 | | 1 | 1k k k k k k kP P K HP
� �

� �  (15) 

 1

| 1 | 1( )T T

k k k k kK P H HP H R �

� �
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Where ˆ |xk k   is the state estimate at time step k  

, kz   is the noisy measurement at time step k ,  H  
is the measurement matrix, |Pk k  is the error 
covariance matrix at time step k , R   is the 

measurement noise covariance matrix, and   kK is 
the Kalman gain at time step . By incorporating 
the Kalman filter into the proposed parallel neural 
network architecture, the accuracy of the RUL 
predictions is improved further. The overall 
structure of the proposed technique is illustrated 
in Fig. 4. 
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Fig. 4. Framework of the proposed technique 

4. Case Study 
To extensively validate the efficiency and 
generalization capability of the proposed 
technique widely used dataset, i.e., XJTU-SY 
rolling bearings dataset is adopted as case study 
in this paper (Wang et al., 2018). 

4.1.Dataset description 
This dataset is comprised of 15 rolling bearings 
elements vibration data which were gathered 
while performing the accelerated degradation 
tests. The platform used to generate the dataset is 
depicted in Fig. 5. The detailed information about 
the experimental platform can be obtained from 
ref (Wang et al., 2018). To record the whole 
degradation process from normal condition to 
bearing failure, each of the accelerated 
degradation test was conducted until the 
maximum amplitude of the horizontal or vertical 
vibration signals surpassed a threshold of 10 times 
the maximum amplitude of vibration signals in 
the healthy stage of the tests. 

The detailed information of the run-to-
failure vibration data of 15 rolling element 
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bearings are given in Table 2. Note that the 
vibration signals from Bearing1_4 and 
Bearing3_2 are not used due to the sudden failure 
characteristic and great variation in vibration 
signal resulting from multiple connective failures 
respectively. Therefore, for XJTU-SY rolling 
bearings datasets, overall horizontal vibration 
signal from 13 bearings for 3 different operating 
conditions are used to verify the proposed 
method. The columns in Table 2 represent the 
operating condition, bearing number, total 
lifetime and first prediction time, and also fault 
types of datasets OR, IR, C and B denote the outer 
race, inner race, cage and ball faults respectively. 

Table 2. Detailed information of case study dataset 

OC Bearing 
Number 

LT 
(mins) 

FPT 
(mins) 

Fault 
Type 

 
35Hz  
& 12kN 

Bearing1_1 123 75 OR 
Bearing1_2 160 45 OR 
Bearing1_3 157 56 OR 
Bearing1_4 121 112 C  
Bearing1_5 51 31 IR, 

OR 

37.5Hz 
& 11kN 

Bearing2_1 490 450 IR 
Bearing2_2 160 47 OR 
Bearing2_3 532 290 C 
Bearing2_4 41 24 OR 
Bearing2_5 338 145 OR 

40 Hz & 
10kN 

Bearing3_1 2537 2358 OR 
Bearing3_2 2495 2069 IR, B, 

C, OR 
Bearing3_3 370 338 IR 
Bearing3_4 1514 1428 IR 
Bearing3_5 113 8 OR 

 

 
Fig. 5. Platform used to generate the XJ-SY 
Bearing Dataset 

 

4.2.Results  
For training the network, bearings of all 
conditions are used separately, because at 
different operating conditions the degradation 
stage behave differently. The final prediction for 
each bearing is generated based on leave-one out 
strategy for training and testing bearings. The 
RUL prediction analysis is performed using 
PyTorch programming language and the case 
study is conducted on Intel CPU i7-7700K @ 4.2 
GHz, 32 GB RAM and Nvidia T1000, 16GB 
memory platform. 

The training data is first divided into 
90% training and 10% validation, batch size of 
32, sequence length of 20, loss function mean 
square error (MSE) and Adam optimizer are used 
as the training parameters for the network, all the 
parameters used for the training of the network are 
first optimized based on the grid search 
methodology. 
   Two commonly used evaluation metrics 
are adopted naming: mean absolute error (MAE), 
root mean square error (RMSE) in this study. 
Deng et al., (2021). Which are represented 
mathematically as follows: 

 
1

1
ˆ| |

m

i i
i

MAE y y
m �

� �	  (17) 

 2

1

1
ˆ( )

m

i i
i

RMSE y y
m �

� �	  (18) 

Where ˆ
iy , iy  represent the predicted and actual 

RUL prediction respectively. 
The final results are compared with other 

deep learning models including multi-layer 
perceptron (MLP) using only the 1D features, 
LSTM model, and another parallel neural network 
technique comprised of MLP and multi-scale 
convolutional neural network (MSCNN) which 
takes in both one dimensional and multi-
dimensional inputs. Table 3 shows that the 
proposed method performs better in almost all test 
cases than the other deep learning methodologies 
of similar nature. Moreover, Fig 6 illustrates the 
graphical representation of the RUL prediction 
using the proposed technique and proves its 
generalization capabilities on different bearings 
under dissimilar working conditions. 
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Table 3. Performance comparisons of different models for RUL estimation 

Testing 
bearing 

MLP LSTM MLP-MSCNN Proposed Method 
RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

Bearing1_1 0.274 0.240 0.242 0.213 0.206 0.176 0.180 0.159 
Bearing1_2 0.313 0.270 0.262 0.229 0.240 0.207 0.190 0.161 
Bearing1_3 0.261 0.221 0.184 0.155 0.178 0.151 0.124 0.109 
Bearing1_5 0.318 0.265 0.215 0.181 0.184 0.155 0.115 0.094 
Bearing2_1 0.203 0.172 0.148 0.126 0.117 0.099 0.113 0.094 
Bearing2_2 0.266 0.214 0.232 0.194 0.122 0.102 0.101 0.098 
Bearing2_3 0.230 0.204 0.199 0.164 0.158 0.126 0.142 0.120 
Bearing2_4 0.251 0.213 0.231 0.195 0.177 0.141 0.114 0.087 
Bearing2_5 0.234 0.202 0.108 0.090 0.0918 0.075 0.112 0.095 
Bearing3_1 0.305 0.262 0.247 0.214 0.244 0.204 0.120 0.094 
Bearing3_3 0.318 0.276 0.191 0.156 0.158 0.129 0.139 0.108 
Bearing3_4 0.252 0.220 0.165 0.139 0.132 0.107 0.137 0.103 
Bearing3_5 0.376 0.310 0.267 0.225 0.266 0.219 0.216 0.183 

 

Fig. 6. Prediction results for (a) Bearing1_1, (b)Bearing1_2, (c)Bearing1_3, (d) Bearing1_4, (e) Bearing2_3, (f) 
Bearing2_4 
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In Fig. 6, the α-λ performance metric is delineated 
by upper and lower confidence intervals, with the 
majority of predictions residing within these 
bounds. Deviations from these intervals primarily 
occur in the latter part of the forecast due to the 
increased irregularity of bearing vibrations which 
is also reported by Saxena et al., (2008). 

5. Conclusions and Future Developments 

In this study, a PNN was proposed as an accurate 
and efficient methodology to obtain the RUL 
prediction. The conclusions from the application 
of proposed technique are summarized as follows: 

(i) Both 1D time series-based features and 
2D image-based feature images are 
taken simultaneously as inputs, which 
are fed to the parallel structure for 
boosting the computational efficiency 
and accuracy of the network 

(ii) The data augmentation technique used in 
this methodology, using the sliding 
window uses variational stride to 
generate a homogeneous dataset for 
better performance. 

(iii) The case study is performed for the 
rolling element bearings, and verifies the 
capabilities of the proposed approach. 

Further research will focus on the use of transfer 
learning techniques to achieve improvements in 
computational time and accuracy. And also, to 
model the degradation stage in a non-linear 
manner to better represent the real-world scenario 
which is not linear in nature. 
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