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Predictive maintenance is a new approach to replacing components based on the data-driven Remaining-Useful-Life
(RUL) prognostics. However, implementing predictive maintenance remains challenging for aircraft. First, as aircraft
maintenance requires high reliability, it is necessary to quantify the uncertainty of the predicted RUL. Moreover, the
maintenance of multi-component systems should be planned considering the updated RUL distributions of individual
components and complex cost models. This paper proposes an integrated method for the predictive maintenance
of multi-component aircraft systems. We estimate the probability distribution of RUL using convolutional neural
networks and Monte Carlo dropouts. Then, deep reinforcement learning (DRL) is applied to plan the replacement
of multiple components based on individual RUL distributions. This method considers the uncertainty of RUL
predictions, risk of component failure, time-varying maintenance costs, and maintenance slot costs. A case study on
the predictive replacement of two turbofan engines illustrates the proposed method. By considering the probability
distribution of RUL and grouping some replacements, the proposed DRL-based predictive maintenance provides
lowered long-term maintenance cost.

Keywords: aircraft maintenance, predictive maintenance, data-driven maintenance, Remaining-Useful-Life prognos-
tics, deep reinforcement learning.

1. Introduction

Predictive maintenance (PdM) has evolved based

on rapidly developing artificial intelligence and

increasing use of health condition monitoring

data. PdM can improve the efficiency of tradi-

tional time-based maintenance (TBM), which re-

lies on maintenance tasks repeated at fixed time

intervals. These intervals are often shorter than the

average life of components to prevent unexpected

failures. Thus, some components are replaced far

before their end-of-life, wasting their useful life

and incurring a high cost. Under PdM, however,

individual components are replaced based on their

Remaining-Useful-Life (RUL) estimated from the

up-to-date condition monitoring data. Using the

RUL predictions, PdM aims to plan maintenance

tasks more efficiently.

During the last decade, many studies proposed

RUL prognostics methods for aircraft components

and systems (Sprong et al., 2020). For example, a

stochastic regression model is used to predict RUL

of landing gear brakes (Lee and Mitici, 2020), par-

ticle filtering is used to estimate RUL of aircraft

cooling units (Mitici and Pater, 2021), etc. Recent

studies consider more complex aircraft systems,

such as turbofan engines. A popular approach for

turbofan engine RUL prognostics is convolutional

neural networks (CNN) (Li et al., 2018; Pater

et al., 2022), and their variations, such as multi-

scale deep CNN (Li et al., 2020), and CNN with

temporal pooling (Babu et al., 2016). However,

most existing methods are limited to single-value

predictions of RUL without explicit quantification

of uncertainty, which is necessary to plan safety-

critical aircraft maintenance.

Moreover, there are not enough studies on

maintenance planning methods considering the

data-driven RUL prognostics of multiple compo-

nents. In (Pater et al., 2022), turbofan engines are

replaced based on the alarm triggered by RUL

predictions. Similarly, in (Wang et al., 2018), air-
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frame panels are replaced based on the crack size

estimated by the extended Kalman filter. These

methods, however, rely only on the mean predic-

tion of RUL or crack size without considering the

associated uncertainty. In addition, the economic

correlation in multi-component system mainte-

nance needs to be exploited more. In (Lee et al.,

2022), a more complex cost model considering

hangar usage cost, is suggested for the mainte-

nance grouping of aircraft landing gear brakes.

However, this method is based on the single-value

predictions of RUL.

Overall, implementing predictive maintenance

for a multi-component aircraft system has a few

remaining challenges: (1) to quantify the uncer-

tainty of RUL predictions and (2) to plan multi-

component maintenance considering the predicted

RUL, its uncertainty information, and complex

cost models.

In this paper, we propose a PdM method for

a multi-component aircraft system, which inte-

grates probabilistic RUL prognostics and sequen-

tial maintenance planning. Our probabilistic RUL

prognostics use CNN and Monte Carlo dropout

to estimate the probability distribution of RUL

prediction. Then, we apply deep reinforcement

learning (DRL) for the sequential planning of

predictive maintenance tasks. This method con-

siders time-varying maintenance costs, the risk

of component failures, and, most importantly, the

uncertainty of RUL predictions.

2. Probabilistic RUL Prognostics

2.1. Multi-channel 1D CNN model

We consider health condition data consisting of

time-series data of multiple sensors monitoring a

component. Let the health condition data x have

nF features corresponding to a time-series data

of sensor reading, and let the length of the time-

series be nW , i.e.,

x =

⎡
⎢⎣

x1,1 ... xnF ,1

...
...

x1,nW
... xnF ,nW

⎤
⎥⎦ . (1)

We use run-to-failure data for training. Thus, the

true Remaining-Useful-Life (RUL) ρ is calculated

from the remaining time to failure.

Given this setup, the RUL prognostics is posed

as a supervised learning problem to predict RUL ρ

(output) from a given health condition data x (in-

put). We propose a convolutional neural network

(CNN) model, where multiple 1D kernels are used

for multiple channels (Lee and Mitici, 2023). The

proposed architecture of CNN is given in Fig. 1.

The input data x is a 2D matrix of size (nF ×
nW ), of which columns are time-series data of

nF sensors. We consider the time-series data of

each sensor as an individual channel of CNN, and

apply a 1D kernel along each. This approach ef-

fectively extracts patterns from multivariate time-

series data (Zheng et al., 2014).

We first apply 5 multi-channel 1D convolu-

tional layers to the input data. Each convolutional

layer is defined by the kernel length nK , and the

number of output channels nC . The lth convolu-

tional layer gets input x(l−1) from (l− 1)th layer,

where x(l−1) has n
(l−1)
C channels. The output of

channel c ∈ {1, . . . , nl
C} of the lth convolutional

layer is obtained as follows:

xl
c = gl

⎛
⎝blc +

n
(l−1)
C∑
c′=1

κl
c,c′ ∗ x(l−1)

c′

⎞
⎠ (2)

where ∗ is the convolutional operator, κl
c,c′ is the

kernel for input channel c′ and output channel c,

nl
C is the number of output channels in lth layer,

blc is the bias of output channel c, and gl(·) is

rectified linear unit (ReLU) activation function.

After the convolutional layers, two linear layers

are applied. The number of neurons in lth layer is

denoted as nl
N . Finally, the output neuron repre-

sents the RUL of the given input data.

2.2. Monte Carlo dropout for uncertainty
quantification

We apply Monte Carlo dropout for the convolu-

tional layers and linear layers in Fig. 1. Applying

Monte Carlo dropout, random nodes are ignored

during the forward propagation of the neural net-

work. In effect, slightly different neural networks

are trained simultaneously, preventing the overfit-

ting of the model during training (Srivastava et al.,

2014).

During testing, Monte Carlo dropout can be
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Fig. 1. Multi-channel 1D CNN architecture.

used to quantify the uncertainty of output predic-

tion during testing (Gal and Ghahramani, 2015).

For a given test input data, we generate an empir-

ical distribution of output using multiple forward

propagations with different neurons dropped out.

Mathematically, this distribution approximates the

posterior distribution of deep Gaussian process

(Gal and Ghahramani, 2015). Thus, we propose to

approximate the distribution of the predicted RUL

using the distribution of Monte Carlo dropout.

3. Predictive Maintenance of
Multi-component Aircraft System

3.1. Formulating PdM as Reinforcement
Learning Problem

Predictive maintenance (PdM) is a sequential

decision-making process (see Fig. 2). A predictive

maintenance schedule is updated every D flight

cycles, which is referred as a decision step. At

the start of tth decision step, we collect sensor

data available from the previous decision step.

Using the updated sensor data of each component

i ∈ {1, . . . , N}, we estimate the distribution of

Remaining-Useful-Life (RUL). Given the updated

RUL prognostics, we decide when to replace the

components during the tth decision step. We can

either schedule a component replacement at cycle

k ∈ {1, ..., D}, or do not replace it in the tth

decision step. For the next decision step (t + 1),

we repeat the same process.

We formulate this sequential decision-making

of predictive maintenance into a reinforcement

learning problem (Kaelbling et al., 1996). An

agent interacts with an environment. The agent

observes the state of the environment, and takes

Fig. 2. A sequential decision-making for predictive
aircraft maintenance of a multi-component system.

an action to change the state of the environment.

During this state transition, the agent gets a reward

that reinforces its specific behavior, namely pol-

icy.

In Fig. 3, the predictive maintenance is il-

lustrated as a reinforcement learning problem.

At decision step t, the (hidden) state is ρt =

[ρ1,t, · · · , ρN,t], where ρi,t is the true RUL of

component i. The maintenance agent cannot ob-

serve the true RUL ρt. Instead, it observes the

estimated distributions of RUL of the components,

which are obtained using the RUL prognostics

model and sensor data (see Section 2). The ob-

served state st is structured as follows:

st =

⎡
⎢⎣
p1,1,t ... p1,D,t

...
...

pN,1,t ... pN,D,t

⎤
⎥⎦ , (3)

where D is the number of flight cycles in a de-

cision step, N is the number of components, and

pi,k,t is the probability that the RUL of component

i is less than or equal to k, i.e., cumulative distri-
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Fig. 3. Formulation of predictive maintenance into a reinforcement learning problem.

bution function (CDF). Formally, pi,k,t is defined

as follows:

pi,k,t = P (Ri,t ≤ k | xi,t), (4)

where Ri,t is the predicted RUL of component i

at decision step t, and xi,t is the health condition

monitoring data of component i at decision step t.

Based on the observed state st, the maintenance

agent takes action at defined as follows:

at =
[
a1,t · · · aN,t

]
, (5)

where ai,t > 0 implies the maintenance decision

for component i. If �ai,t� ∈ {1, 2, ..., D}, then we

schedule a maintenance at flight cycle �ai,t�. If

�ai,t� > D, then we do nothing in the tth decision

step, i.e., no maintenance.

A reward of a decision step rt is the main-

tenance cost for the upcoming D flight cycles,

which consists of maintenance task cost (rtaski,t ) of

component i, and maintenance slot cost (rslotk,t ) at

flight cycle k.

rt =
∑

i∈{1,...,N}
rtaski,t +

∑
k∈{1,...,D}

rslotk,t . (6)

The maintenance task cost rtaski,t depends on

maintenance action ai,t and true RUL ρi,t.

rtaski,t =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−csch(�ai,t�) if �ai,t� ≤ D ∧ �ai,t� < ρi,t

−cuns if �ai,t� ≤ D ∧ �ai,t� ≥ ρi,t

−cuns if �ai,t� > D ∧ ρi,t ≤ D

0 if �ai,t� > D ∧ ρi,t > D

(7)

If the maintenance is scheduled before the true

RUL ρi,t, we pay a scheduled replacement cost

csch(k) defined as csch(k) = c0 − c1k. The cost

of replacement scheduled in early flight cycles is

assumed to be expensive due to the shorter time to

prepare spare parts (c1 > 0). If the maintenance

is not scheduled before the true RUL ρi,t, the

component fails, and an expensive penalty cost is

unavoidable (cuns > c0).

The maintenance slot cost rslotk,t is paid for each

flight cycle when the aircraft undergoes mainte-

nance.

rslotk,t =

⎧⎪⎪⎨
⎪⎪⎩
−cslot if ∃i ∈ {1, . . . , N}

ρi,t = k ∨ �ai,t� = k

0 otherwise

(8)

This includes a fixed cost for aircraft maintenance,

including hangar usage, lease of alternative air-

craft for scheduled flights, etc. Unlike the task

cost, it is paid once per maintenance slot regard-

less of the number of tasks. Thus, we may group

the maintenance of several components in a slot

to save the maintenance slot cost. Here, the key

trade-off lies between the saved maintenance slot

cost and the wasted useful life of the component

replaced early due to the grouping. The optimal

maintenance action at should be made to mini-

mize the overall cost rt based on the observed

state st, which is the CDF of RUL of multiple

components.

After the agent gets reward rt by taking action

at, the hidden state true RUL ρt+1 is updated. If

component i is not replaced, ρi,(t+1) = ρi,t −D.

If component i is replaced by either scheduled or

unscheduled maintenance, ρi,(t+1) is updated for

the true RUL of a new component.
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The goal of the maintenance agent is to find an

optimal policy π(at|st) : S → A, where st ∈ S
is the state space and at ∈ A is the action space.

The optimal policy π∗ is defined as a policy that

maximizes the expected reward, i.e.,

J(π) =
∑
t

E(st,at)∼ρπ
[γtrt(st, at)], (9)

where γ is a discount factor, and ρπ(st, at) is the

state-action trajectory distribution induced by a

policy π.

3.2. Soft-Actor-Critic algorithm

We train the maintenance agent using the Soft-

Actor-Critic (SAC) algorithm (Haarnoja et al.,

2018), which has proven to be effective for

single-component predictive maintenance (Lee

and Mitici, 2023).

The SAC algorithm trains a policy (actor)

and a state-action value (critic). Unlike typical

actor-critic algorithms, the SAC algorithm uses a

stochastic policy and a soft objective to explicitly

optimize exploration towards new policies.

The stochastic policy πφ(at|st) is defined by

the mean fμ
φ (st) and the standard deviation

fσ
φ (st) of an action, where φ is the trainable

parameters of fμ
φ and fσ

φ . During the training,

action at is sampled from this stochastic policy as

follows:

at = fμ
φ (st) + εt · fσ

φ (st), (10)

where εt is sampled from a standard Gaussian dis-

tribution. During the evaluation, the deterministic

policy is used, i.e., at = fμ
φ (st).

The soft objective J(π) considers the maxi-

mization of both the expected reward and the

entropy of the stochastic policy. Formally,

J(π) =
∑

t E
(st,at)∼ρπ

γt[rt(st, at) + αH(π(·|st))], (11)

where α is the temperature parameter determining

the weight between the reward and the entropy.

For the SAC algorithm, we use three deep

neural network models: the policy πφ, the soft

Q function Qθ, and the soft value function Vψ ,

where φ, θ, and ψ are the trainable parameters.

These models are trained with the following loss

Fig. 4. Policy network πφ for multi-component air-
craft systems.

functions:

Jπ(φ) = E
st∼D,
at∼πφ

[
log πφ(at|st)− 1

αQθ(st, at)
]
, (12)

where D is the replay buffer. The architecture of

policy net πφ for multi-component aircraft system

is proposed in Fig. 4. Its input is the CDF of RUL

of individual components (matrix of size N ×D),

and its output is the mean and standard deviation

of the stochastic policy (vector of length N ).

JV (ψ) = E
st∼D

[
1

2
(Vψ(st)− V̂ (st))

2

]
, (13)

where V̂ (st) = [Qθ(st, at)− α log πφ(at|st)].
JQ(θ) = E

(st,at)∼D

[
1
2

(
Qθ(st, at)− Q̂(st, at)

)]
, (14)

where Q̂(st, at) = rt(st, at) + γ E
st+1∼p

[Vψ̄(st+1)].

The full implementation of the SAC algorithm for

PdM is elaborated in (Lee and Mitici, 2023).

4. Case Study: Predictive Replacements
of Two Turbofan Engines

The proposed method using probabilistic RUL

prognostics and DRL approach is illustrated for

the predictive replacements of two turbofan en-

gines.

4.1. Data description

We use the C-MAPSS data set, especially FD002

subset, which is a simulated health condition data

of aircraft turbofan engines considering 6 oper-

ating conditions and 1 failure mode (Saxena and

Goebel, 2008). We use 14 non-constant sensor

measurements, the current operating condition,
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Fig. 5. Estimated RUL probability distribution of
FD002 Testing Engine 158.

and the number of flight cycles at 6 operating

conditions, i.e., 21 features in total (nF = 21).

The time window is 21 (nW = 21).

The FD002 data subset has run-to-failure data

for 260 engines. We use the data from 130 engines

to train the CNN model for probabilistic RUL

prognostics. The rest 130 engines are used to gen-

erate maintenance episodes for the DRL approach

(100 engines for the training and 30 engines for

the evaluation).

4.2. Estimating distribution of RUL

The trained CNN model is tested for the testing

engines of the FD002 data subset, which are in-

dependent of the engines used for training. An

example of the estimated RUL probability dis-

tribution is shown in Fig. 5. The mean of the

estimated RUL distribution is 18.61 cycles, while

the true RUL is 15 cycles, i.e., the mean value

overestimates the RUL. However, the probabil-

ity distribution in Fig. 5 gives more information

than just a mean value. The standard deviation of

the predicted RUL (8.16) is relatively large. The

peak probability is at 13 cycles. The distribution

is right-skewed. As such, using the probability

distribution, better maintenance decisions can be

made.

The quality of the estimated RUL distribution

is analyzed using calibration plot (Kuleshov et al.,

2018). Let F (R|x) be the cumulative distribution

function (CDF) of the estimated RUL R, given

input data x. Let F−1(ζ|x) = inf{R : ζ ≤ F (R|x)},
i.e., the quantile function of R. The estimated

Fig. 6. Calibration plot of the estimated CDF of RUL
for FD002 data subset.

RUL distribution is perfectly calibrated if

P (ρ ≤ F−1(ζ|x)) = ζ ∀ζ ∈ [0, 1], (15)

where ρ is the true RUL. The calibration plot

P (ρ ≤ F−1(ζ|x)) against ζ in Fig. 6 is linear, and

we conclude that the estimated probability distri-

bution is well calibrated to the empirical probabil-

ity distribution of RUL. The current approach does

not distinguish aleatoric uncertainty and epistemic

uncertainty, but these can be distinguished using

the method proposed in (Valdenegro-Toro and

Mori, 2022), which will provide further uncer-

tainty information for future work.

4.3. Planning predictive maintenance

We train the DRL agent using the SAC algorithm.

At each training episode, health condition data and

true RUL are sampled from the C-MAPSS data

set, our CNN model generates an observed state st
(RUL distribution), and a reward rt is given based

on the true RUL and the action at of the DRL

agent. The reward model parameters are assumed

as follows: c0 = 1.0, c1 = 0.01, cuns = 3.0, and

cslot = 0.5.

For the evaluation, a deterministic policy of the

trained DRL agent is used, i.e., at = fμ
φ (st). If

the predicted RUL of engine i is large, the trained

policy suggests no maintenance, i.e., �ai,t� > D.

Otherwise, it suggests scheduling a replacement

after �ai,t� flight cycles. In Fig. 7, only engine 2

is scheduled for a replacement because the CDF

of RUL of engine 1 is low, p1,30,t < 0.003.

If the RUL of two engines are close enough, the

DRL policy may suggest grouping two replace-
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Fig. 7. The DRL agent scheduled a replacement for
only one engine. Maintenance of another engine will be
scheduled in the later decision steps.

ments at the same cycle to save the maintenance

slot cost. In Fig. 8, two replacements are sched-

uled together after 2 flight cycle.

4.4. Comparison of performance

The long-term maintenance cost of the DRL-

based PdM is compared to other maintenance

methods. One is time-based maintenance (TBM),

where engines are replaced at the age of A cycles.

The age threshold A can be optimized to avoid

unscheduled replacements (A = 125) or minimize

cost (A = 175). We also consider the PdM with-

out using DRL, where engines are replaced when

the CDF of RUL exceeds C. The CDF threshold

C is optimized to minimize cost (T = 0.01).

Table 1 shows that the PdM methods signif-

icantly reduce the total maintenance cost com-

pared to the TBM methods. Compared to the

cost-minimal TBM (A = 175), the DRL-based

PdM reduces 26% of the total cost. Using the

RUL prognostics, instead of a fixed interval of

replacements, engines are timely replaced when

their RUL is small.

Moreover, the DRL approach further reduces

27% of unscheduled maintenance cost compared

Fig. 8. The DRL agent scheduled replacements for
both engines after 2 cycle. This reduces the mainte-
nance slot cost.

to the PdM using the fixed CDF threshold (C =

0.01). Setting a fixed CDF threshold is not effec-

tive because the distributions of RUL vary over

different engines (see Fig. 7 –8). Thus, it is bene-

ficial to train the maintenance agent based on the

probability distributions.

The DRL policy reduces the maintenance slot

cost by grouping engine replacements when it is

beneficial, i.e., when the cost saving from group-

ing is higher than the cost saving from using

another engine for a few more cycles. Overall,

under the DRL policy, 5% of engine replacements

are grouped. On the other hand, under TBM, only

1% of replacements are grouped by chance. As

a result, Table 1 shows that the DRL-based PdM

uses the smallest maintenance slot cost.

5. Conclusion

In this study, we propose a predictive maintenance

method for multi-component aircraft systems,

considering both Remaining-Useful-Life (RUL)

prognostics and maintenance planning. Especially

our RUL prognostics method predicts the prob-

ability distribution of RUL using convolutional

neural networks and Monte Carlo dropouts. The
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Table 1. Comparison of engine maintenance cost

for 3000 flight cycles.

Maintenance Cost
Maintenance Method Total Sch. Uns. Slot

PdM (DRL) 56.6 37.8 3.2 15.6
PdM (C = 0.01) 58.2 37.7 4.3 16.2
TBM (A = 175) 76.7 32.7 25.6 18.4
TBM (A = 125) 86.5 60.4 0.0 26.1

RUL distribution is used by a deep reinforcement

learning (DRL) agent to plan cost-minimal main-

tenance. The benefit of the proposed method is

illustrated for the predictive replacement of two

turbofan engines. Finally, this study illustrates the

potential of the DRL approach as a predictive

maintenance planning method.

Future work is needed in the disentanglement

of aleatoric and epistemic uncertainty, and the

application of the framework in other systems and

maintenance actions.
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