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The usage of carbon fiber reinforced plastics (CFRP) in safety critical systems requires the application of Structural

Health Monitoring (SHM). A well-known non-destructive testing (NDT) method is Acoustic Emission (AE).

AE-based methods enable a continuous and in-situ monitoring of CFRP structures. While the classification of

damages using AE signal features is thoroughly studied, the investigation of the correlation between the reliability

of classification results and the applied loading patterns enables a new metric to ensure the success of SHM

methods. In this contribution the probability of detection is used to evaluate the reliability of classification results.

The four damage modes (debonding, delamination, matrix crack, and fiber breakage) are classified by a support

vector machine (SVM). To distinguish the damage modes time-frequency domain features of the corresponding AE

signal are calculated and finally classified to evaluate the dependency between the applied loading patterns and the

classification quality. A concept of an online control loop is proposed using the reliability of classification results as

control variable for improved testing strategies finally leading to ensure a safe usage of CFRP structures.
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1. Introduction

The increasing complexity of industrial plants re-

quires SHM to ensure a safe operating system.

The use of NDT methods is essential for monitor-

ing systems and by applying the AE method, in-

situ monitoring is possible. The method discussed

in this paper is based on the analysis of a sys-

tem’s state of health by means of ultrasonic waves.

If a damage occurs, energy is released as ultra-

sonic waves that propagate within the material

and can be measured by piezoelectric transducers.

Because the ultrasonic waves are generated by

the material itself, AE is considered as a passive

monitoring method.

The usage of monitoring systems in complex or

remote plants can improve the efficiency. When

CFRP is used as a lightweight substitute of equiv-

alent strength for metals, SHM is required be-

cause of the material’s non-ductile behavior. In

case of offshore wind farms maintenance costs

are the main factor behind high power genera-

tion costs (Tusar and Sarker (2022)). The remote

location and weather dependent accessibility of

offshore wind turbines lead to longer downtime.

To decrease downtime and maintenance costs new

maintenance strategies are developed that rely on

monitoring systems to define maintenance sched-

ules when or before failures occur (Ren et al.

(2021)). The overall efficiency can only be im-

proved, if the information of the monitoring sys-

tems about the plant are reliable (Colone et al.

(2019)).

The reliability of diagnostic statements, espe-

cially in the case of fault diagnosis, is analyzed

in Rothe et al. (2017). It is shown, that the clas-

sification performance depends on systems load-

ing conditions and the reliability of classification

results can be improved by fusion of results of

several classifiers.

The classification of damage mechanisms in

CFRP is thoroughly studied. Features of time-

frequency and frequency domain are commonly

used for distinguishing between the damage

mechanisms (Baccar and Söffker (2017)). The

damage mechanisms are assigned to specific fre-

quency ranges, which lie between 10 and 500 kHz.

Delamination describes the detachment of sin-

gle fiber layers and is observed at the lowest

frequency range compared to the other damage

mechanisms. In Hamdi et al. (2013) delamina-
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tions are detected at frequencies of 30 to 90 kHz

while in Gutkin et al. (2011) frequencies of 50

to 150 kHz are reported. Frequencies above the

frequency range of delamination are associated

with matrix cracks. In Oskouei et al. (2012) and

Azadi et al. (2019) matrix cracks are denoted

to frequencies in the range of 100 to 250 kHz.

The loss of adhesion between matrix and fiber is

characterized as debonding and is observed at the

frequency range between matrix crack and fiber

breakage. In Marec et al. (2008) debonding is ob-

served at 170 to 350 kHz and in Nazmdar Shahri

et al. (2016) at 250 to 310 kHz. Fiber breakage

is unanimously reported at the highest frequency

range. In Chelliah et al. (2019) a frequency range

of 280 to 400 kHz is stated, while a frequency

range of 420 to 500 kHz is observed by Sayar et al.

(2018). The frequency ranges differ depending on

the material properties, but the relative frequency

order is not changing.

In Wirtz et al. (2016), the dependence between

the loading conditions and the classification re-

sults is studied for the first time, and in Wirtz

et al. (2019) it is further elaborated. While CFRP

specimen are under cyclic load, AE are measured.

The probability estimations are analyzed with re-

spect to excitation frequencies and displacements.

A direct relationship between loading condition

and classification results can not be formulated.

This contribution is structured as follows: in

section 2 the experimental set-up and procedure

is introduced, followed by the applied methods

to analyze the measurement data. The results of

data analysis and machine learning are explained

in section 4. In section 5 and section 6, summary

and outlook are given.

2. Experiments

The experiments are divided into two phases,

namely the initial damage phase and the cyclic

loading phase. In the initial damage phase the

CFRP specimen are damaged by indentation and

during the cyclic loading phase the specimen are

bent at various frequency and amplitude combi-

nations. The experimental procedure is first de-

scribed in Wirtz et al. (2019). In comparison to

Wirtz et al. (2019) the set-up is changed for spec-

Fig. 1. Experimental set-up for indentation Baccar

and Söffker (2017)

imen of shorter length and the displacement is not

used as control parameter, because the material

stiffness is decreasing with material degradation

(Wang and Zhang (2020)). Therefore, a constant

displacement would lead over time to a decreas-

ing load. Instead of the displacement the input

amplitude of the power supply is controlled to

ensure a constant loading conditions. The CFRP

plates have the dimensions 130 × 60 × 2 mm and

consist of three layers in 90°/0°/90° orientation.

In both experiment phases, the occurring AE are

measured by piezoelectric transducers, using the

piezoelectric effect to convert surface displace-

ments into voltage signals. A preamplifier with

high input impedance and low output impedance

ensures that the transducers are not affected by the

sampling of the signal. The analog voltage signal

is digitized using a field programmable gate array

measurement board with a sampling frequency of

4 MHz and 16-bit resolution (Dettmann (2012)).

First initial damages are induced by indenta-

tion. The experimental set-up is shown in figure 1

and is described by Baccar and Söffker (2017).

The CFRP specimen are secured by a clamping

system and a conical indentor with obtuse angle

and a diameter of 100 mm is used to apply bending

loads. A second indentor with smaller diameter

and acute angle is used to simulate impact dam-

ages and directly damage the matrix.

In the second phase of the experiment, the pre-
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damaged specimens are clamped by a fixture on

the slider and a stationary bench vise. The test rig

is shown in figure 2 and used to apply different

bending loads on the specimen. The power supply

is controlled by a voltage sine signal and converts

the voltage signal into a proportional current sig-

nal with constant voltage. The chosen frequencies

and amplitudes of the sine signal are 2 to 6 Hz and

2 to 6 V, respectively. The actuator drives a crank

which is connected to a slider. Thus the rotatory

motion is converted into a translatory motion. The

slider’s displacement is measured by a proximity

sensor. The measured displacements range from 6

to 10 mm. By controlling the input voltage instead

of the resulting displacement a constant excitation

force is ensured.

3. Methods

The raw AE data are preprocessed to filter out

relevant AE events. The detection of signal parts

containing damage related AE is done by ana-

lyzing signal energy in the frequency range of

10 to 500 kHz. Therefore, the short-time Fourier

transform (STFT) of the measurement data is cal-

culated. The STFT of a signal x(t) is defined as

XF (ω, τ) =

∫ ∞

−∞
x(t)γ(t− τ)e−jωtdt, (1)

where γ(t−τ) denotes the window function of the

local Fourier spectrum at time τ .

The calculated coefficients at the given fre-

quency range are used to calculate the signal

energy for each time window at the given fre-

quency range. Threshold monitoring is applied to

detect high energy signal parts. The corresponding

signal part in time domain is manually analyzed

and labeled. Labeling is based on the criteria of

the respective damage mechanisms described in

section 1. For feature extraction the continuous

wavelet transform (CWT) is calculated for each

detected and labeled AE signal. The CWT of a

signal x(t) is defined as

XW (s, τ) =
1√
s

∫ ∞

−∞
x(t)Ψ∗

(
t− τ

s

)
dt (2)

with the wavelet Ψ∗, frequency-scale parameter s

and time-scale parameter τ .

The CWT coefficients of the time window with

the highest CWT coefficient is used as feature

vector. Here, only the CWT coefficients corre-

sponding to the frequency range of 10 to 500 kHz

are considered. This leads to a feature vector of 60

elements.

A SVM is a binary classifier separating two

classes of data by a linear hyperplane. The in-

ternal optimization problem is the maximization

of the margin, the distance between the support

vectors (SVs) of each class. In case of not linear

separable data, the feature space is transformed

by kernel functions. To use a SVM for multi-class

classification two strategies can be applied.

The One-Against-All (OAA) strategy separates

each class from every other class of the classifi-

cation problem. The number of required SVMs

NOAA is equal to the number classes C. The

One-Against-One (OAO) strategy separates two

individual classes from each other. Therefore the

number of required SVMs NOAO is higher for

more than three classes in comparison to the OAA

and defined by

NOAO =
C(C − 1)

2
. (3)

For both strategies the class of an unknown data

sample is predicted by determining the highest

decision value among all SVMs (Sharmila Joseph

et al. (2022)).

The decision value f is used to calculate the

posterior probability rij of class i and binary clas-

sifier j by

rij =
1

1 + eAf+B
, (4)

where the estimations of A and B are calculated

by minimizing the negative log likelihood of train-

ing data (Chang and Lin (2011))(Platt (1999)).

The estimated probability pi is calculated by solv-

ing the quadratic approach of Wu et al. (2004)

min
p

1

2

N∑
i=1

∑
j:j �=i

(rjipi − rijpj)
2,

where pi ≥ 0, ∀i, and

N∑
i=1

pi = 1.

(5)
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Fig. 2. Experimental set-up for cyclic loading

The probability pi describes the affiliation of a

data sample to class i.

4. Results

The SVM’s hyperparameter are optimized using

Bayesian optimization. A training data set of 100

data samples per class is used to train the classifi-

cation algorithm. Over-fitting during the training

process is avoided by 10-fold cross-validation.

The best validation results are achieved with a

linear kernel and the OAA strategy. The model’s

cross-validation accuracy is 95 %.

In the measurements during cyclic load-

ing of the CFRP specimen 211 damages are

detected. For several frequency-displacement

and frequency-voltage combinations no damage

mechanisms are detected. With 45 % of all dam-

age mechanisms delamination is the most fre-

quently detected, followed by fiber breakage, ma-

trix crack, and debonding with 22, 21, and 12 %,

respectively.

The probability estimation for each damage is

calculated. When several damage mechanisms of

the same class are detected at the same frequency-

displacement and frequency-voltage combination,

the average probability estimation is calculated.

The calculated probability estimations are visual-

ized in figure 3 and 4 and denoted by the color

code. For frequency-displacement and frequency-

voltage combinations, where no damage is de-

tectable, the probability estimation is 0 %. In fig-

ure 4 probability estimations of each damage class

are shown with respect to excitation frequency and

displacement.

Beside of the frequency-displacement combi-

nations 2 Hz and 10 mm, 5 Hz and 6 mm, and

6 Hz and 9 to 10 mm the probability estima-

tions of delamination are calculated for the entire

frequency-displacement field. The largest area of

high probabilities are found at 2 to 4 Hz and 6

to 8 mm. Decreasing probabilities are observed

at the combination of low frequencies and high

displacements.

The largest area of high probabilities for matrix

crack is at 4 to 5 Hz and 9 to 10 mm. Local

probability maxima are observable at frequency-

displacement combinations 6 Hz and 6 mm, 2 Hz

and 7 and 9 mm, and 3 Hz and 8 mm. The remain-

ing field shows lower probabilities.

The highest probabilities of debonding are at

the frequency-displacement combinations 2 Hz

and 8 to 9 mm, 4 Hz and 6 to 7 mm, and 6 Hz

and 8 mm. Also in Wirtz et al. (2019) not all

frequency-displacement combinations show de-

tected damages.

For fiber breakage two larger areas of

high probabilities are observed at frequency-
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Delamination Matrix Crack

Debonding Fiber Breakage

Fig. 3. Probability estimations depending on frequency and displacement

displacement combinations 4 to 6 Hz and 7

to 8 mm, and 2 to 4 Hz and 9 to 10 mm.

The frequency-displacement combinations be-

tween the two fields show a decreasing probabil-

ity.

The probability estimations with respect to

excitation frequency and excitation voltage are

shown in figure 4.

The highest probability for delamination is ob-

servable at frequency-voltage combinations of 2

to 5 Hz and 2 to 4 V.

At the frequency-voltage combination 3 to 6 Hz

and 2 to 4 V a larger area of lower probabilities

for matrix crack is displayed. A local maxima is

located at 3 Hz and 5 V.

For fiber breakage a large area of high proba-

bility is shown. The highest probabilities can be

found at high frequencies and low amplitudes, and

at low frequencies and high amplitudes.

Similar probability distributions between

frequency-voltage and frequency-displacement

are observable, especially for debonding and fiber

breakage. The probability estimations with re-

spect to the excitation frequency and the excitation

voltage are more uniformly distributed than the

probability estimations with respect to excitation

frequency and displacement.

5. Summary

The results confirm a dependency between the re-

liability of classification results and loading condi-

tions under which the damages arise and therefore

will become theoretically detectable. Therefore,

the reliable use of monitoring systems is limited

as detection rates vary with loading conditions. If

possible, systems can be operated under loading

conditions, at which reliable diagnostic statements

are generated, to increase the overall efficiency. In

this way, downtime due to maintenance scheduled

because of false detection of faults can be mini-

mized while saving resources.
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Delamination Matrix Crack

Debonding Fiber Breakage

Fig. 4. Probability estimations depending on frequency and input voltage

6. Outlook

In future work the dependency between the relia-

bility of the classification results and loading con-

ditions has to be studied in more detail to establish

a relationship between the excitation amplitude

and frequency and the detection and classifica-

tion of damage mechanisms. Finally, the measured

AE signals can be classified online to establish a

closed control loop. The control loop can be used

to automatically adjust the loading conditions to

an excitation amplitude and frequency combina-

tion under which the most reliable classification

results can be obtained.
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