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The role of renewable energy has grown considerably in various regions of the world, particularly solar and wind 
energy sources. Both energy sources are capable to meet energy requirements in an efficient and environmentally 
sustainable manner in solar and wind rich regions of the world. South and north Asian regions are one of them, 
where solar and wind energy resources are utilized with the help of available energy conversion machines. The wind 
turbine is one of them and its various types have played a vital role in the utilization of wind energy in the industrial 
sector for power generation. Horizontal wind axis turbine is one such type and it is capable to achieve better power 
output plus energy efficiency. It is used therefore in large-scale wind electric power generation. Although, there are 
certain technical problems related to the performance of wind turbines, for instance bearing failure rate. Due to the 
failure of bearings and other parts of wind turbines, considerable costs of specialized maintenance have incurred on 
the purchase of parts, installation, and trained workmanship which contribute towards an increase in downtime of 
power generation.  Bearing faults are extremely complex and sometimes cannot be resolved using reconfigurable 
control. Therefore, early detection of bearing faults is critical to its performance and lower downtime. This paper 
investigates the requirements of bearing health and safety assessment. The assessment is based on the principles of 
estimation of the Remaining Useful Life (RUL) of bearing. A proposed prognosis model of Reliability Health and 
Safety Analysis (RHSA) is used for the evaluation of the performance of the bearing. The reliability model is used 
for the assessment of the useful life of the bearing subsystem of the Horizontal axis wind turbine and early detection 
of RUL leads to improve the performance and to avoid its failures.  
 
Keywords: Horizontal Axis Wind Turbine (HAWT), Reliability Health and Safety Analysis (RHSA), Remaining 
Useful Life (RUL), Wind Energy. 
 
1. Introduction 
Wind turbines are frequently positioned in severe 
environmental conditions, making their parts’ 
operation and maintenance difficult. The most 
vulnerable mechanical components in rotating 
machines are rolling elements like bearings[1]. A 
bearing failure can result in a complete machine 
breakdown, causing unintended interruptions in 
production and financial losses. The Remaining 
Useful Life (RUL) of wind turbine bearings and 
gearbox are the major components in their 
maintenance and operation. It is critical to install 
an effective bearing Condition Monitoring (CM) 
and fault diagnosis system. So that incipient 
bearing faults can be detected and diagnosed for 

preventing machine damage[2]. Such as early 
detection of a rolling element bearing defect in a 
high-speed wind turbine can lead to timely 
maintenance to avoid potentially disastrous 
consequences such as fire and human loss caused 
by unexpected failure. Wind turbine bearing 
reliability and performance are critical for the 
long-term smooth operation of wind turbines 
under hazardous conditions. RUL prediction is 
one of the most important tool in decision-
making, for the prediction of time to failure of 
machine parts in advance. This makes it 
convenient for maintenance engineers to carry out 
qualitative risk analysis and formulate successful 
maintenance strategies[3].  
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In the Wind Turbine Generation Systems (WTGs) 
inspections and maintenance are very important 
for the improvement of the life span of a gearbox, 
bearings, blades, and other components of the 
wind turbine [4,5]. Parts such as the gearbox, 
generator, main bearing, blades, and tower cause 
sometimes unexpected downtimes and thus 
require the most attention of users. The wind 
turbine main bearing failure may result in the rise 
in the cost of repair and maintenance [6]. The 
bearing failure can damage the drive train in the 
wind turbine generation. As a result, there is an 
increase in the cost of specialized maintenance, 
such as the cost incurred on the installation of 
equipment, rigging plans, and trained 
workmanship. The bearing failure rate in wind 
turbines remains very high, up to 76% [7]. Wind 
farm operation and maintenance practices 
typically involve a combination of corrective 
(breakdown or reactive response) and preventive 
(periodic) maintenance strategies. Preventive 
maintenance requires regular inspection and small 
maintenance actions in comparison to breakdown 
maintenance, which requires huge effort and time. 
It also facilitates to reduce repair, and other costs 
incurred on purchase of damaged components. 
Gear box and bearings are deteriorated with 
respect to time as per L10 criteria due to wear and 
tear and such problem is serious in the offshore 
turbines due to decrease in lifespan from 20 years 
to 10 years[8]. The wind turbine main bearings 
are subject to a variety of failure modes, such as 
wear rate of inner and outer race faults, pitting, 
cracks, brinelling, and damage to the cage. The 
bearing health is the ratio of current time to failure 
time which illustrate the state of degradation. The 
failure modes are dependent on certain factors 
such as wind air density, ambient temperature, 
humidity, dust, risky climate conditions, and 
variation in the wind load due to rain, storm, and 
poor maintenance.  

Typically, the prediction of Remaining Useful 
Life (RUL) has been accomplished using various 
models such as Support Vector Regression (SVR) 
based on the well-known support vector machine 
(SVM) algorithm, Long Short-Term Memory 
(LSTM) models based on the architecture of 
Recurrent Neural Networks (RNNs), as well as 
Convolutional Neural Network (CNN) and Deep 
Neural Network (DNN) models. These models 
have been widely employed in RUL prediction 
tasks. While considering the various models used 

for predicting Remaining Useful Life (RUL), it is 
important to note that each model has its 
limitations. For instance, the SVR model may 
encounter difficulties in handling large datasets 
and capturing non-linear relationships, as it lacks 
the ability to automatically learn features[9]. On 
the other hand, LSTM models, which are based on 
the architecture of Recurrent Neural Networks 
(RNNs), excel in handling sequential data. 
However, they may not be as flexible when it 
comes to non-sequential data [10].  It captures 
sequential dependencies by maintaining an 
internal memory state, so the training process is 
slower and takes more time than the other models. 
CNN model learns hierarchically from image 
patches and abstract features in addition to that its 
architecture consists of multi hidden layers which 
makes the network complex and more 
challenging for features analysis[11]. DNN model 
is computationally expensive and complex 
because it requires a large amount of labeled 
training data to achieve good performance[12]. 
DNN is the best combination of hyperparameters, 
model hyperparameters must be tuned based on 
learning rate, batch size, number of layers, and 
activation function. If the data is small, there is a 
risk of overfitting during training, and the 
iterative process is time-consuming. Many 
authors are working on DNN to improve network 
performance. However, ANN is interchangeable 
with DNN, which has demonstrated great success 
in a variety of applications by overcoming all 
limitations. ANN model is the reliable solution 
for the health monitoring of WTGs to enhance the 
life span of wind turbines up to its estimated life. 
The reliability and health of bearing as a sub-
component be ensured through time management 
of lubrication which avoids catastrophic bearing 
failures to avoid fire, premature gear box failure 
and other components.       

2. Condition Monitoring System (CMS) 
Condition Monitoring (CM) and RUL showed a 
significant role to decrease downtime, leading to 
creating cost-saving opportunities. The condition 
monitoring of Wind Turbines (WT) based on 
vibration, noise, and temperature signals has been 
gaining significant attention in the past few years. 
The vibration monitoring of wind turbines is on 
the rise. Vibration monitoring is used to detect 
bearing and gear faults based on AI and deep 
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learning methodologies are gaining popularity in 
the age of automation and complex machines.  
 
The RUL of a Wind Turbine component can be 
estimated by using ANNs. The CM as shown in 
Fig. 1., is based on multivariate data signals such 
as vibration and temperature. Data acquisition is 
the primary part, and data is processed to the ANN 
model to identify the degradation and finally, 
RUL is calculated. The process as shown in Fig. 
1. is handled in the Condition monitoring server. 
 

 
Fig.1. Condition Monitoring Flow Diagram 

The data is first extracted as raw signals, and then 
features are identified and then classification is 
carried out to obtain the desired outcomes using a 
deep learning model. All the data is then fed into 
the ANN model for the prediction of residual 
useful life.  

3. Methodology of Proposed ANN Model 
3.1. Remaining useful life prediction methods 
Remaining useful Life focuses on condition-based 
maintenance on time and ensures the safety of the 
equipment. Physics-based method, data-driven 
method, and hybrid method are used to calculate 
the RUL of equipment according to the nature of 
the complex machine system and the availability of 
data and expertise within the organizations. 
Bayesian networks (BN) structure and probabilities 
for each node are used for fault diagnosis of 
bearing. Other tools which are also used to generate 
are the tree structure fishbone diagrams[13], and 
similar variation sensitivity matrix[14]. The 
structure of the tree based on data is utilized to 
optimize the problems [15]. Equipment 
maintenance databases are used to produce the 
provisional likelihoods of the network. Data 
sources for BN include QMS, MES, RMS, CMMS, 
and CMM which are based on the algorithms, and 

determine the tree structure. The tree topology 
initializes and is completed.  

The original contribution of this method lies in its 
amalgamation of machine learning algorithms to 
develop a prediction procedure for RUL. 
Comparing the proposed method to existing 
approaches reveals several differentiating factors. 
Traditional methods for RUL estimation often rely 
on simplified models or else on rule-based 
approaches, which may have limitations in 
capturing complex degradation patterns and 
variations. In this identified gap, the proposed 
ANN model leverages the power of machine 
learning algorithms to overcome these limitations 
and provides a more data-driven and accurate RUL 
prediction framework. The integration of artificial 
neural networks enables the method to handle non-
linear relationships and capture subtle degradation 
patterns that may not be captured by conventional 
approaches. 
 
3.2. Artificial neural network models  
The ANN articulate a relationship between the 
inputs, outputs, and their structure constituent is 
known as a neuron. The fundamental element of 
ANN is the artificial neuron, and such a 
relationship is expressed in Eq. (1) works by 
taking the  and transforming it into the 

 by using: 

          Eq. (1) 

Where Weight and Bias are parameters for ANN, 
and it symbolizes the actual relationship between 
inputs and outputs. This relationship corresponds 
to a linear input dataset and a non-linear input 
dataset as in Eq. (2). A non-linear activation 
function is also added to this relationship.  

             Eq. (2) 

The prerequisite features of root mean square 
error are as: 

            Eq. (3) 

The actual linear RUL value is denoted by the   
and the predicted RUL is denoted by  and the 
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length is represented with n. The first parameter 
as shown in Eq. (3), is applied to measure the 
accuracy and precision of prediction because of 
the existence of some error with the predicted e 
value. The mean of the data series is calculated 
with the help of the feature of Kurtosis, and the 
relationship is expressed in the following 
expression.  

  

           Eq. (4) 

Kurtosis as in Eq. (4),  mean of data series 
 it works on the signal’s series data such as k 

= 1, 2..., K, K represent data points. Standard 
deviation is also calculated as represented in Eq. 
(5).  

             Eq. (5) 

For the probability density function and hazard 
rate in real-world applications, peripheral noise in 
the data is reflected in Eq. (6). 

              Eq. (6) 

The cumulative density function is calculated 
with the use of the relationship expressed in 
Eq.(7). Where  is (PDF) and  is the 
cumulative density function as shown in Eq. (7). 

       Eq. (7) 

Weibull hazard rate function is obtained as (γ1 = 
0.4077, γ2 = 0.4360) where (η1 = 1.2017, η2 = 
1.2970) respectively. The fitted quantities of 
features are used as the input to represent the 
bearing's decline. RMS Weibull hazard rate 
relationship is expressed in Eq. (8) and Eq. (9). 
relationship for kurtosis Weibull hazard rate is 
expressed in  Eq. (10) and Eq. (11) are given 
below.  

               Eq. (8) 

              Eq. (9) 

kurtosis Weibull hazard rate equation 

            Eq. (10) 

            Eq. (11) 

 

 
Fig.2. Structure of Proposed ANN Model 

ANN Proposed model structure, as shown in Fig. 
2. includes six inputs. Input,  and are the 
time values, respectively.  and  are present 
and previous state of maintenance  and  are 
kurtosis values respectively. Here it is important 
to mention that the time, RMS, and kurtosis 
values are used for the calculation of the RUL of 
a bearing through the ANN Model. It has two 
hidden activation layers where bias weight 
propagates with normal weights linearly and 
nonlinearly and it facilitates to predict RUL. 
The process flow diagram shown in Fig. 3. 
demonstrates the input data parameter of time and 
vibration signals. Weibull hazard rate function is 
fitted to each vibrational value. The time and 
fitted RMS and Kurtosis values are based on 
present and previous states and it is used to 
establish a dataset for validation of data up to 
+5%. In the training process, the same validation 
data set may also prevent overfitting, so ANN is 
trained with the Levenberg-Marquardt algorithm 
which helps an algorithm for training. the 
proposed network after training. It is used to 
forecast the RUL of bearings. The minimum error 
value is fed to the network before new vibrational 
signals, whose features are based on RMS and 
Kurtosis, which is fitted with the Weibull hazard 
rate function to resolve the nonlinearity of wind 
turbine problems. Bearing RUL is preferred for 
ANN which is referred  and for 
mapping the best health condition over the period 
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RUL. It is considered a benchmark parameter. It 
specifies that once the bearing reaches its 
specified life. it will be fully destroyed. The 
FEMTO dataset has been extensively utilized to 
illustrate various methods for condition 
monitoring and prognostics. 

 
Fig.3. Proposed Reliability ANN Model 

Some research is carried out on rolling element-
bearing health condition monitoring, signal 
processing techniques, and high-frequency 
resolution of the vibration signals [16]. This 
dataset was also used in some publications to 
study the method of construction of HI from 
vibration signals[17]. This dataset is used to 
develop the RUL model[18]. Data analysis is used 
to train neural networks. Once an overfit is 
detected, it is discontinued training. The model 
performs well during the training process but 
performs poorly when tested with unknown data. 
The cross-validation method is used for 
overcoming this issue. For training and validating 
the network, two distinct sets of data are used. 
During an overfit situation, the validation set's 
mean square error (MSE) first decreases, till it 
reaches a minimum and then increases. 

Training is discontinued as the validation set 
escalates. The mean square error starts increasing 
as a result of the regression algorithm which is 
based on overfitting of data. There is no specific 
method for the selection of an ANN topology. The 

evaluation of network topology test and error 
quest scheme occurs in two stages such as, 
divided data is first training and it is followed in 
the second stage by validation for instance 
training holds the actual data set beginning of 
input, and validation within +5% feed of data. 
ANN model is normalized at the output to obtain 
a similar order of magnitude between zero and 
one (0-1) to avoid the issues of instability with the 
modeled result. It is necessary to choose the 
minimum validation error for the prediction of 
RUL. The hidden layers are configured with a 
log-sigmoid transfer function and transfer 
function (linear) at the layer of output. By 
applying this combination network, it is possible 
to easily approximate any of the assigned 
function, Levenberg Marquardt (trainlm) 
algorithm provide satisfactory results in the 
training algorithm. The training algorithm is 
proposed for curtailing functions which is the 
square of the sum of the nonlinear function. The 
second-order convergence approach is performed 
by not considering the calculation of the Hessian 
matrix. The performance function is equal to the 
sum of squares followed by Hessian matrix 
approximation is performed as defined in Eq. 
(12). 

            Eq. (12) 

where  and  represents the Jacobian 
matrix, which includes network error with respect 
to biases and weights as the first derivative. ANN 
Algorithm standard back-propagation method can 
be used to compute the algorithm more easily than 
the Hessian matrix. Network error “e” can be 
calculated by the application of the ANN 
algorithm. Levenberg-Marquardt ANN logarithm 
is used for Hessian matrix approximation which 
is expressed as in Eq. (13).  

          Eq. (13) 

Hessian matrix is used to initialize scalar value = 
0 by using approximate same, which is similar to 
Newton's method. If the value is large, then it is 
transformed with a small step size by using the 
gradient descent method. Newton's method is 
found as quick and accurate with minimum error. 
The core goal is to switch on as possible as early 
as Newton's method. On each updated step the 
performance is lowered and vice versa so the 
performance function inductee is decreased at 
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separate algorithm iterations. Network MSE [19] 
is applied to the data as shown in Eq. (14). 

 Eq. (14) 

Where, , , , N are error, the actual value, 
desired value, and number of data points 
respectively. The proposed model approach with 
FEMTO data is used to verify the performance of 
ANN network. During this procedure, the training 
set data is fed into FFNN model. Fig. 3. and Fig. 
4. depict the testing process' output performance. 
This performance demonstrates the use of the 
ANN model with time and RMS and kurtosis 
hazard rates as inputs and normalized life 
percentage of their output. The proposed ANN 
model is a suitable tool for the prediction of the 
RUL of Bearing.   

3.3. Significance and validation of ANN 
In this paper, the proposed ANN model is 
validated by using the actual and predicted test 
data of bearing to forecast the RUL. The 
prognosis of model RHSA assesses the useful life 
of a bearing, which can enable one to choose an 
option related to the reduction of downtime 
through early detection. In wind turbines and 
complex machine components, the ANN model 
can minimize downtime and maintenance costs 
due to early accurate prediction of RUL. it is 
effective for improving RUL prediction accuracy, 
particularly in noisy environments, hence it has 
significant practical application. In the decision 
making it saves the time, cost of scheduled 
maintenance and minimizes associated risks, and 
leads to ensuring the operation of power 
generation confidently. 

4. Results 
4.1. Proposed ANN model results  
The Proposed model of ANN has generated 
desired results and it works efficiently under 
linear and non-linear machine problem situations. 
In bearing1_1 health vibrational signals are 
plotted in Fig. 4. The initial signals of the bearing 
are up to 2000 secs, which predict the health of 
the bearing, and signals above that level it shows 
the failure of the bearing. These signals are useful 
and change the signal intensity up to the peak 
value. Such sensed signals reflect the impact force 
or a fault point of the bearing due to wear and tear, 

which helps to obtain information for the RUL of 
the bearing. 

 

Fig.4. Bearing1_1 vibrational Health signal 

The Temperature signals are assigned as input 
parameters to the ANN model with the vibrational 
signals for training. The temperature signals are 
shown in Fig.5. where signals are increasing with 
respect to time which indicates a direct relationship 
between vibration and temperature parameters and 
inverse proportionality between vibration and 
viscosity. It also reveals that rising temperature 
may lead to high friction, and consequently, it 
deteriorates the life of the bearing.  Such 
information is supplied to the Neural Network to 
calculate the degradation process and prediction 
of the RUL of bearing. 

Fig.5. Temperature Signals for Proposed ANN Model 

The RMS of the bearing shown in Fig. 6. 
describes the changing state of vibrational signals. 
It serves as a significant indicator regarding health 
conditions and degradation of bearing. The results 
represent the RMS behavior changes with 
subsequent changes in weights and bias with 
respect to time. Hence, the findings suggest that 
when the time surpasses 2500 seconds, there is a 
noticeable shift in the pattern and intensity of 
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vibration signals, indicating the onset of bearing 
degradation and imminent risk of failure. 

Fig. 6. RMS of Bearing1_1 

ANN model can learn to associate certain 
vibration patterns with different stages of bearing 
health, enabling it to make predictions about the 
remaining useful life of the bearing. Therefore, 
this feature works like an actual scenario to 
forecast the bearing life and fault identification. 

In Fig. 7. Kurtosis values are used to scale the 
data, based on the previous and present state of 
condition of the bearing. Since Kurtosis is 
sensitive to impact signals, it diagnoses the 
surface damage faults. However, it is fourth-order 
static, so it is very difficult to distinguish the fault 
signal from the noise.  

 
Fig.7. Kurtosis of Bearing1_1 

Pulse reflecting surface fault characteristic 
extracted from pulse modulation signals mixed 
with noise. kurtosis helps to assess the presence 
of abnormal or extreme values in the vibration 

signals alongside other relevant features, and 
behavior of vibration signals. 
ANN can learn the relationship between the 
statistical properties of the vibration signals and 
the health state of the bearing leading to improved 
prognostic capabilities. 
 

Fig. 8. Result of ANN Model 

Fig. 8. shows a linear relationship that exists 
between predicted RUL and the behavior of 
vibrational signal, which shows the capability, 
efficiency, and effectiveness of the proposed 
ANN model under the specified condition in the 
prediction of the remaining useful life of the 
bearing, as indicated with a blue line across the 
black line. However, it is important to note that a 
here ANN model is showing the linear 
relationship between the actual and predicted 
RUL because of lower RSME and MSE error 
which reflect the better performance of ANN 
model results near to actual RUL but this may not 
always be expected or feasible in all cases. The 
suitability of a linear trend depends on the specific 
degradation pattern. Different degradation 
mechanisms may exhibit different patterns and 
the proposed model can capture non-linear 
relationships between predicted and actual RUL.  
In brief, the presence of a linear relationship 
between the actual and predicted RUL in Fig. 8. 
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indicates that the proposed ANN model is 
performing accurately in estimating the remaining 
useful life of the bearing, providing valuable 
insights for maintenance planning and decision-
making. The trained (RUL) refers to the predicted 
remaining lifespan of the bearing based on the 
training data in the developed model. It represents 
the estimated time to reflect the operation of the 
bearing before reaching failure. The Validation 
RUL of bearing involves assessing the accuracy 
and reliability of predictions by comparing the 
predicted RUL values with the actual RUL values 
as acquired from real-time monitoring. The 
estimated life indicates the predicted residual life 
of the bearing at different time points. It is plotted 
against the corresponding time on the X-axis 
where estimation is based on the trained model's 
analysis of the bearing's health condition, 
depicted through various sensor signals or input 
features. As a result, the estimated life of the 
bearing provides insights into the expected 
longevity that allows one to make decisions 
regarding proactive maintenance. The ANN 
Model is further applied to additional training 
datasets, including bearings 1_2, bearing2_1, 
bearing2_2, bearing3_1, and bearing 3_2, along 
with testing bearings, to evaluate their reliability 
and predict the remaining useful life of bearings. 
The model demonstrates robust performance in 
predicting the Remaining Useful Life (RUL) of 
bearings. 

 
Fig. 9. Trained Predicted and Actual Tested Result 

The results obtained from the conducted 
experimental test data were completely analyzed. 
These results were compared with the predicted 
values of the remaining useful life (RUL), as 
illustrated in Fig. 9. The X-axis represents the 
samples from the validation dataset of the test 

bearings, while the Y-axis represents the 
corresponding predicted and actual RUL values 
of each tested bearing. Fig. 9. shows the accurate 
and precise determination of the actual and 
predicted RUL of the bearings by the ANN 
model. The validation set of testing data for the 
test bearings illustrated as shown in Table 4.1., 
was utilized to derive and predicted RUL values 
over time. The comparison in Fig. 9. predicted 
and actual values further confirm the superior 
performance of the ANN model in accurately 
predicting the RUL of the bearings. 

4.2. Result in Comparison with Other Models  
The proposed model was evaluated and compared 
with some other machine learning models (SVR, 
LSTM, DNN model) based on key features such 
as RMSE see Table. 4.1., Score, and RUL. These 
variables were used to evaluate each model's 
predictive accuracy, performance, and robustness. 
Similarly, the estimated score of models such as 
SVR, LSTM, DNN, and proposed ANN model is 
0.306, 0.429, 0.482, and 0.812, respectively.  The 
comparison provides scientific evidence to 
support the advantages of the proposed ANN 
model over other machine learning models. The 
lower the RMSE, the lower the overall prediction 
error, and high score values represent model 
accuracy. 
 
Table. 4. 1. RMSE estimation of results comparison 
with three other machine learning models 

 
Hence, the lower RSME and higher the score 
confirms the model prediction of RUL is closer to 
the actual value. The Proposed ANN model 
demonstrates proficiency in handling intricate 
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Actual RUL in Seconds

Predicted RUL in Seconds

Validation Dataset of Bearing

Description SVR LSTM DNN Proposed 
ANN 

Bearing1_3 215.9 131.6 44.5 13.26 
Bearing1_4 14.85 15.75 31.2 3.515 
Bearing1_5 4.17 3.17 21.5 0.240 
Bearing1_6 11.46 9.92 34.2 3.160 
Bearing1_7 14.67 17.45 33.5 3.941 
Bearing2_3 13.97 15.09 19.6 3.346 
Bearing2_4 1.85 1.98 25.2 0.142 
Bearing2_5 7.33 7.63 38.5 2.414 
Bearing2_6 2.66 3.23 43.2 0.409 
Bearing2_7 1.12 0.82 38.7 0.338 
Bearing3_3 3.09 3.15 43.5 0.414 
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data, showcasing its resilience and predictive 
capabilities, thereby affirming its aptness for the 
given task more than the other models. 

5. Conclusion  

The outcomes of the proposed ANN model 
showcase its better performance in precisely 
predicting the remaining useful life of the bearing. 
The proposed model outperforms better than 
other machine learning methods due to its ability 
to effectively handle large datasets and complex 
calculations associated with bearings, considering 
both linear and non-linear factors. This capability 
enables the model to provide accurate RUL 
predictions. The implementation of the proposed 
model significantly contributes to improving 
overall bearing efficiency and preventing failures 
by enabling proactive maintenance in critical 
areas at offshore horizontal axis wind turbines 
such as other assembly parts and components. 
Future research endeavors will focus on further 
advancing RUL prediction methods by 
incorporating the real-time provision of 
maintenance strategies, specifically targeting 
high-speed rotating bearing failures across 
diverse operating conditions. 
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