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The reliability of the electric power transmission system depends on the reliability of its components. As 
components age, the technical condition degrades, and the probability of failure will increase. Consequently, to 
estimate the reliability of a transmission system it is valuable to include the effect of deteriorating components. 
Recent work has demonstrated how this can be done. However, condition dependent reliability models introduce 
new sources of uncertainty that needs to be accounted for and that may be especially important in a long time 
horizon. This work presents a novel approach to propagate the uncertainty in input parameters through the system 
reliability analysis. Monte Carlo simulation is used to create an ensemble to span the sample space of reliability of 
supply indices. The effect of each source of uncertainty may be seen separately, or the effect of several sources is 
seen jointly. The methodology is demonstrated using a failure model for high voltage power transformers in the 
transmission system. The example illustrates that the methodology can identify which sources of uncertainty have 
significant impact on the uncertainty of system reliability indices and to what degree system uncertainty is 
amplified or moderated by interactions between the sources of uncertainty. Moreover, it is shown that the 
uncertainty will not necessarily increase uniformly over time. 
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1 Introduction
To determine the reliability of supply, system 
operators carry out a power system reliability 
analysis (PSRA). Aging power transmission 
grids have higher rates of failure and is thus a 
major concern for the reliability of the power 
supply. To meet this concern, it is important that 
PSRAs account for component condition.
Integration of component condition in system 
reliability has been the topic of several research 
articles, e.g., (Li 2002) which handled end of life 
failures for transformers or (J. H. Jürgensen, L. 
Nordström, and P. Hilber 2019) which handled 
condition dependent repairable failures. Recent 
work (Toftaker, Foros, and Sperstad 2023) has 
shown how one may account for both condition 
dependent failures and preventive replacement 
for transformers in PSRA and how this can be 

carried out over an extended time horizon of 
several years (Toftaker and Sperstad 2022).

Information about component condition 
apparently provides more accuracy and better 
ability to inform system operator decision 
making. However, the condition dependent 
failure models rely on several parameters, each 
with an associated uncertainty. The added 
complexity of the model thus makes it more 
important but also more challenging to assess the 
uncertainty of the results. The main aim of this 
paper is to develop a methodology to propagate 
the uncertainty in input parameters through the 
system reliability analysis and assess the
consequent uncertainty in reliability of supply 
indices. Quantifying the uncertainty in reliability 
indices is useful for several reasons. First, it can 
inform decision makers of the level of 
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confidence that can be put on the results. 
Second, it quantifies the value of reducing 
uncertainty in input parameters, and shows 
which parameters contribute more. Third, it can
help assess the value of introducing new features 
to the model like condition dependent failure 
rates, as compared to simpler models. Finally, in 
the long-term analysis it shows how far into the 
future the model may be useful.

Different methods for uncertainty analysis
for PSRA have been explored in the literature.
According to (Aven and Zio 2011) uncertainty
analysis for risk assessment can be placed in 5 
categories: probabilistic analysis, probability 
bound analysis, imprecise probability, random 
sets and possibility theory. Which approach is 
most appropriate depends on the context of the 
analysis. Reliability analysis is often concerned 
with rare events and may be based on scarce 
empirical data, purely probabilistic approaches 
are often not sufficient, and this has given 
inspiration to the alternative approaches. For 
high impact events with low probability (HILP
events), a hybrid probabilistic-possibilistic 
approach is used to assess the effect of 
uncertainty (Sperstad, Kjølle, and Norum 2021).
For power system reliability analysis considering 
component condition,
and Jarman 2016) used Second Order Probability 
and Dempster-Shafer Evidence Theory to 
evaluate how the uncertainty in end-of-life 
probability models influence the uncertainty in 
system reliability indices.

This paper builds on the work in (Toftaker, 
Foros, and Sperstad 2023) and (Toftaker and 
Sperstad 2022), which presented estimates for 
condition-dependent reliability indices but no
estimate for their accuracy. A novel method to 
estimate the uncertainty in reliability indices is 
thus presented. Uncertainty in input parameters 
is represented as probability distributions and the 
uncertainty in reliability indices is represented 
by the distribution of the index marginalized 
over the input parameters, like a prior predictive 
distribution in Bayesian statistics (Gelman et al. 
2013). The assessment of the distribution and 
thus the uncertainty is propagated through the 
PSRA by a Monte Carlo simulation.
Furthermore, the analysis distinguishes between 
aleatory uncertainty which describes the random 
variability of the outcome and the epistemic 
uncertainty which describes the systematic 

uncertainty caused by lack of knowledge about 
the model and its parameter values (Aven et al. 
2014).

The paper is structured as follows. Section 2
briefly introduces the theoretical background for 
PSRA and presents the proposed methodology to 
uncertainty analysis for PSRA. Section 3
describes the condition dependent component 
reliability model and details how the 
methodology can be applied to perform 
uncertainty analysis for that model. A case study 
is described in section 4, while section 5
discusses the results and considers implications 
and future work. 

2 Power system reliability analysis
Reliability of supply is a measure of the long-term 
average ability of the power system to provide 
electric power to end users. The results of a 
reliability of supply analysis are the values of a set 
of reliability indices for a set of delivery points, or 
load points. The annual energy not supplied is an 
important example of such a reliability index. 

In this paper we are concerned with analytical 
methods to evaluate reliability indices, and 
specifically, the methodology is illustrated using
the OPAL framework (Kjølle and Gjerde 2012).
OPAL is based on the analytical minimal cut set 
methodology (Kjølle and Gjerde 2012; Gjerde et 
al. 2016). Contributions to the reliability of supply 
indices are calculated for each operating state, 
each delivery point, and each contingency j that 
correspond to a minimal cut set for delivery point 
k and operating state i. For the expected annual 
energy not supplied ( ), these contributions 
can be calculated as

, ,  = ,  ,  , , , (1)

where , and , denote equivalent failure rates 
and outage times for contingency j, and 

, , ,  denotes the power interrupted at 
delivery point k. For other details of the PSRA 
method we refer to (Toftaker and Sperstad 2022).

2.1 Uncertainty analysis for PSRA
This section presents a method to quantify the 
uncertainty in reliability indices that are outputs 
of analytical power system reliability analyses as 
presented in Section 2. For concreteness it is 
presented for the reliability index EENS, but the 
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method is equally applicable to other reliability 
indices.

The expected energy not supplied is the 
expected value of the stochastic variable ,
which in turn depends on the stochastic process 

( ) indicating whether the components of the 
system are in a functional state or a fault state at 
time . The process ( ) depends on several
factors , … , , and let denote the vector of 
factors. The expected energy not supplied may 
be expressed as an expected value with respect to 
the distribution of , ( ), ie. ( ) =

( ( | )). To assess the uncertainty in 
E(ENS) that can be attributed to we follow a
probabilistic framework (Aven and Zio 2011)
and analyze the distribution of E(ENS|Y),
analogous to a prior predictive distribution. The 
approach was chosen because it provides 
interpretability and that different sources of 
uncertainty are treated consistently. In addition,
the prospect of integrating the approach in a 
Bayesian approach is appealing. The conditional 
expectation may be considered a function ( )

and gives rise to the corresponding random 
variable = ( ). If is a bijective function,
the percentiles of are given by the 
percentiles of Y as = ( ). However, in 
the general case the percentiles are given by an 
integral over the set = {

: ( | = ) < },

( | ) < = ( )

= ( )

= ( ) < ( )

(2)

The integral may best be evaluated by Monte 
Carlo simulation based on a sample , … ,

where ( ).

3 Component reliability
This section gives a brief recap of the component 
reliability model introduced in (Toftaker, Foros, 
and Sperstad 2023) and (Toftaker and Sperstad 
2022). The main purpose of the reliability model 

is to include technical condition of individual 
power system components in the system 
reliability analysis.

It is assumed that a component can fail due 
to mid-life failures or wear out failures and 
additionally that it may be replaced preventively
to avoid failure. The time to mid-life failure
follows an exponential distribution with rate .
The time until preventive replacement is for 
simplicity assumed to be exponentially 
distributed with rate . Following (Toftaker, 
Foros, and Sperstad 2023), the time until wear-
out failure follows the probability distribution 

( ( )| , ), where ( ) is the apparent age of 
the component, is the expected value, and is 
the standard deviation. It is assumed that if the 
health index at calendar age is and the 
corresponding apparent age is ( ). The 
relation  between health index and apparent age 
may be obtained through statistical data as 
illustrated by (Foros and Istad 2020). To obtain 
apparent age as a function of calendar time it is 
further assumed that apparent age follows the 
function ( ) = ( ) + where it is assumed 
that the present time is = 0. If a wear-out 
failure occurs, the transformer is replaced and its 
apparent age restarts at 0. If a mid-life failure has 
occurred a minimal repair is sufficient, and the 
condition remains unchanged. For any failure the 
time spent in a failed state is exponentially 
distributed with rate . Following (Toftaker, 
Foros, and Sperstad 2023) we assume that that 
within a one-year analysis horizon the technical 
condition does not change significantly and that 
after the component is replaced, the probability 
of wear out failure is negligible. This means the 
functional state of the component is well 
described by a Markov model where the time to 
wear-out failure is exponentially distributed with 
rate

( ) =
( + 1) ( )

1 ( )
(3)
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Let , denote the number of failures within 
the time-period to . It can be derived that, 
with = ( ), the expected number of wear 
out failures within the next year, is given by

( , ) =
+

(1 )
(4)

3.1 Extended time horizon
To extend the component reliability model to a 
longer time horizon than one year we adopt the 
recursive scheme introduced in (Toftaker and 
Sperstad 2022). The expected number of wear-
out failures for component in year is given by 
the law of total expectation as

, = , | = ( = )
(5)

where is the apparent age of the component at 
the end of year , and ( , | = ) is given 
by (4) with =  ( ). Let , denote the 
expected number of wear-out failures in year .
Let denote the present apparent age of a 
component such that ( = ) = 1. The 
recursive expression for the probability of 
having a certain apparent age at the beginning of 
year t is then

( = )  =  ( = ) , , (6)

where , = ( = | = ). 
Finally, an overall time-dependent failure 

rate for the transformer, considering mid-life 
failures as well as wear-out failures, is derived 
from , (Toftaker, Foros, and Sperstad 2023).
This failure rate can then be used as input data to 
the analytical PSRA by setting the value in (1)
to estimate annual reliability indices. In this way, 
each of the years of the analysis horizon can be 

evaluated independently by the power system 
reliability analysis. 

3.2 Custom aging rate
Above it was assumed that the increase in 
apparent age is equal to the increase in calendar 
age. Here we generalize the approach to the 
situation where ( ) = ( ) + , such that 
is the aging rate. By replacing by / ,
the methodology above serves to find the 
expected number of failures in the time scale of
apparent age. This means (5) gives the expected 
number of wear out failures in a time period t
(t + To find an approximation of the 
expected number of failures within a calendar 
year to + 1 we integrate the piecewise 
constant function defined in (5). If we define 

=  ( ) and =  ( + 1) the integral 
reduces to the following sum ,

 ( , ) where = + 1 ,
= ( + 1) + 1, and = 1 elsewhere.

3.3 Uncertainty in component reliability
The condition dependent reliability model 
contributes to uncertainty in energy not supplied.
In the short term, within one year, uncertainty in 
input parameters and contribute to 
uncertainty in the distribution . This 
combined with uncertainty in the rate of aging 
contribute to uncertainty in ( ) as given by 
(2). The uncertainty in , and represents 
epistemic uncertainty in the model.

In the long term, i.e., for year > 1, there 
will be additional, aleatory uncertainty 
stemming from the variability within the period 
prior to . Specifically, this contributes to 
uncertainty in the initial condition of the 
components at the start of year .

The different contributions and how they are
propagated through the reliability model is 
illustrated in Fig. 1.
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Fig. 1. Illustration of how uncertainty is propagated from input parameters to component failure rates.

3.4 Propagating epistemic uncertainty
To assess the joint uncertainty of the input 
parameters we need to sample from the joint 
distribution. According to Section 2.1, the 
uncertainty attributed to , , and is 
summarized by the distribution ( | , , ).
This is analyzed by generating an ensemble 
( , , ), … , , , of size . For 
each member ( , , ) of this ensemble we 
calculate , as described in 3.1. In case we 
seek to exclude the contribution of one 
parameter, e.g., ,  we assign the same value to 
each member of the ensemble, e.g., 
( , , ), … , , , .

3.5 Propagating aleatory uncertainty
The recursive scheme allows for the 
quantification of aleatory uncertainty in the long-
term analysis. To clarify, we quantify the 
uncertainty in , that is due to the variability 
in the input to the reliability analysis at the start 
of year t. We quantify this, once again, following 
the definition given in Section 2.1 and use the 
results in Section 3.1, to analyze the distribution 
of ( | ). For this purpose, we sample the 
apparent age at year , , from the distribution 

( = ), to obtain a set of apparent ages
, … , . Each sampled initial age corresponds 

to a failure rate , . The failure frequencies 

, , … , , form an ensemble representing the 
probability distribution of , .

3.6 Joint epistemic and aleatory uncertainty
To assess the joint uncertainty due to epistemic 
and aleatory uncertainty we first generate an
ensemble ( , , ), … , , , as in 
Section 3.4. For each member ( , , ) we then 
generate an ensemble , … , from ( =

| , , ), obtained from (6), where the 
recursion is started with , , as the input 
parameters. For each element in the joint 
ensemble, we calculate the failure frequency to 
obtain the ensemble , , … , , where  

= .

4 Case studies
To illustrate the proposed methodology, we 
extend the case study that was presented in 
(Toftaker, Foros, and Sperstad 2023; Toftaker 
and Sperstad 2022). This case is based on the 25-
bus electric power test system described in
(Sperstad et al. 2020), and the system includes 8
transformers with failure rates based on the 
failure model from (Foros and Istad 2020).
Where not otherwise stated, input parameters of 
the case study are identical to the ones used in 
(Toftaker and Sperstad 2022).
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In this paper, we evaluate the reliability of 
the test system by estimating the expected 
energy not supplied for a 25-year period. This 
time horizon is chosen to be able to clearly see 
the trends in the results, since condition 
deterioration evolves over time scales of 
decades. Note that in a real power system,
several other changes will also occur in the 
system over so large time scales, but in this 
paper, these are neglected to be able to isolate 
fundamental effects related to component 
condition. How these effects interact with effects 
due to load growth, system development 
measures, etc. will be a subject of further 
research.

As our aim in this paper is to evaluate how 
uncertainty propagates in the model, we assume 
some initial probability distributions for selected 
input parameters. How these probability 
distributions can be estimated from condition 
information is left for future work. For the rate 
of aging, we choose a log normal distribution 
with parameters = 1 and = 0.25. The 
mean lifetime of transformers  is assigned a 
normal distribution with mean 60 and standard 
deviation 5. The variance of the lifetime 
distribution is set to be = + where is 
inverse gamma distributed with shape parameter 

= 3 and scale parameter = 250. The 
parameter is a location parameter and is 
assumed to be 18. The chosen distributions
correspond to conjugate prior distributions
(Gelman et al. 2013) for the Gaussian 
distribution.

4.1 Scenarios and sensitivity case
In addition to the base case described above 
(case 1), we define a sensitivity case (case 2).
The sensitivity case is designed to investigate the 
importance of the specific choice of initial 
technical condition for the transformers in the 
test system. To this end, we take the transformer 
that has the worst technical condition in the 
system and assign it an apparent age of 30 years,
representing half the expected lifetime.

For each of the cases we define 4 scenarios,
as specified in Table 1.

Table 1. Specification of the scenarios. A 1 means 
included, while 0 means not included.

Scen. 
no.

Aging rate Distribution 
parameters

Aleatory 
uncertainty

1 0 1 0
2 1 1 0
3 0 0 1
4 1 1 1

The column Aging rate specifies whether 
uncertainty in aging rate is included, Distribution 
parameters specifies whether uncertainty in 
and is included, while Aleatory specifies 
whether the accumulated variability between 
years is included.

4.2 Results
The results of the case studies are presented in 
terms of the distribution ( ( | ) < ) as 
defined in (2). In Fig. 2 to Fig. 5, the results are 
displayed in terms of 95 and 50 percent 
confidence intervals together with the median

( | ) per year. Fig. 2. and Fig. 3. shows 
that the uncertainty due to input parameters 
slightly decreases as time passes. Fig. 4 shows 
that the aleatory uncertainty accumulates over 
time and at about ten years the aleatory 
uncertainty dominates the epistemic uncertainty. 
Fig. 5 suggests that when all sources of 
uncertainty are included, the uncertainty is 
stabilized by the end of the analysis horizon.

Each member of the ensemble corresponds 
to the path of EENS over the analysis horizon.
and it is also informative to plot the individual 
paths. Fig. 6. shows the paths for case 1, scenario 
2 which forms the basis for the plot in Fig. 3. As
time passes the paths get closer. This is due to 
the oscillatory behavior of component reliability
which stems from the convolutional integral that 
determines the time dependent failure probability
(Rausand and Høyland 2004). The sensitivity 
analysis in case 2 shows similar results as case 1. 
Fig. 7 shows ( ) for scenario 1, and we 
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Fig. 2. Percentiles and mean of the distribution of 
E(ENS|Y) per year for case 1 scenario 1

Fig. 3. Percentiles and mean of the distribution of 
E(ENS|Y) per year for case 1 scenario 2

Fig. 4. Percentiles and mean of the distribution of 
E(ENS|Y) per year for case 1 scenario 3

Fig. 5. Percentiles and mean of the distribution of 
E(ENS|Y) per year for case 1 scenario 4

Fig. 6. E(ENS|Y) per year for case 1 scenario 2, with 
100 paths shown.

Fig. 7. Percentiles of the distribution of E(ENS|Y) per 
year for case 2 scenario 1.

observe the same behavior as for case 1 and the 
uncertainty decreases as time approaches 25

years.

5 Discussion
This work extends previous work to include 
condition dependent failure probability in power 
system reliability analyses by presenting a 
methodology to analyze uncertainty.
Specifically, a methodology is proposed that
quantifies how uncertainty in input parameters 

affects the uncertainty in reliability indices. The 
methodology is developed and illustrated on a 
model for condition dependent failure 
probabilities. The analysis covers both the short 
term (around one year) and how uncertainty 
develops over a longer time horizon.
The case studies have revealed that in the

short term, the uncertainty in estimated 
EENS is dominated by uncertainty in the 
parameters of . For the long term, the random 
variability steadily increases, while the 
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uncertainty contribution from input parameters 
decreases slightly. This might seem counter 
intuitive but is a consequence of the model 
reaching an equilibrium state and that the initial 
state of the transformer is forgotten as time 
passes. As a result, random variability will 
dominate the uncertainty at some point. These 
conclusions hold for a variety of initial 
conditions as indicated by the sensitivity case. 

The presented methodology makes it 
possible to represent the probability distribution 
of reliability indices which may be useful in a
decision-making context especially if the 
decision maker is risk averse or not only 
considering the expected value. It may also be
valuable in deciding what information to gather.
To further utilize the proposed methodology, a
necessary next step is to quantify the uncertainty 
in input parameters, i.e., to estimate the 
probability distributions , , and . In 
addition to applications in decision support for
asset management, one may test the hypothesis 
that a more detailed model, like the one 
including component condition, gives a 
statistically significant different result than the 
simpler model using average failure rates. 
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