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A multi-stage classification algorithm is proposed to predict the fault type and its associated intensity level of a 

camera input frame to enhance the reliability of a camera-based system. A fault injecting tool is used to generate the 

dataset required for the training. The model architecture mainly comprises three convolutions neural network (CNN) 

layers and three fully connected layers. The model achieves 93.8% accuracy for predicting a fault type. For the fault 

intensity prediction the accuracy significantly varies for each fault type but for some faults, the model achieves a 

very good prediction accuracy. However, for some other faults the accuracy can be remarkably low. The primary 

reason for this gap is that the intensity levels of all considered faults can be described in a sufficiently quantitative 

way, i.e., there is no sufficient metric available so far. 
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1. Introduction 
Feedback signals from sensors are often used to 

perform necessary control actions for real time 

functional operation, e.g., adaptive cruise control 

(ACC) systems, lane keeping systems (LKS), etc. 

The quality of performance of these safety-critical 

systems highly relies on the measurement data fed 

back by the associated sensors. A faulty sensor 

data can not only undermine the stability but also 

drastically compromise the safety of the system. 

On the system level, the classical fault-tolerant 

methods are quite popular in the literature, see 

Blanke et al. (2000) and Gao et al. (2015). These 

methods perform fault diagnosis for the execution 

of fail-safe actions, see Blanke et al. (2000). 

Normally, the fault diagnosis is performed by the 

processor of the system; thus, the computational 

load is at the control processing unit. Moreover, 

the fault tolerant control methods are 

computationally intensive. An intelligent 

monitoring method on the sensor level that can 

independently detect and classify the faults would 
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not only reduce the computational load of the 

system but also facilitate early detection and 

diagnosis. This is a general strategy that can be 

integrated into different functional control 

algorithms, irrespective of whether the control 

functions are developed by the classical control 

schemes or any modern artificial intelligence (AI) 

methods.  

As part of this strategy, the classification of 

sensor fault types is actively discussed in the 

literature; see e.g., Baljak et al. (2013); Jan et al. 

(2017). Additionally, categorizing the associated 

intensity of each fault type would better facilitate 

the performance evaluation of a system. 

Therefore, we propose an extended classification 

concept that classifies both type and strength of a 

fault. The strength represents a defined intensity 

of a fault type. This proposed classification 

methodology is presented for a red, green, and 

blue (RGB) camera sensor. In Secci and Ceccarelli 

(2020), the failure mode and effects analysis are 

performed for different fault types in an RGB 

camera used for an autonomous driving 

application. Some examples for injected faults are 

blur, broken lens, dead pixels, etc. Definitively 

different fault types have certain effects on the 

functional operation. The strength of faults may 

also intensify the effects to different degrees. For 

example, a slightly broken lens may not 

considerably affect the lane-keeping performance 

of a vehicle, but if the lens is heavily cracked, the 

system could completely fail. There exist some 

studies where fault injection is applied to the AI 

networks to analyze the effects on the system; see 

Su and Chen (2022) and Liu et al. (2017). In this 

paper, the faults are injected into the input image 

in order to emulate the possible hardware and 

environmental faults on the camera sensor, which 

will later be used to formulate some necessary 

remedial actions to enhance the reliability. For the 

fault injection, an in-house tool is used, see 

Mohammed (2022), which can generate different 

types of faults with an assigned strength. 

This paper is structured as follows: Section 2 

briefly describes the overview of the proposed 

method. In Section 3, the dataset used for the fault 

injection and the classification are discussed. 

Section 4 presents the fault classification 

algorithm. Finally, Section 5 concludes the paper. 

 

2. Overview of the Proposed Method 
In Fig. 1 an example of the proposed 

classification concept implemented on an RGB 

camera sensor is shown. Within the proposed 

method, the sensor module provides its input to 

two AI/machine learning (ML) classification 

algorithms. The first algorithm identifies the fault 

occurrence and distinguishes the fault type. Then 

according to the fault type, another trained AI 

algorithm classifies the fault intensity. Here the 

intensity is categorized into the three levels low, 

medium, and extreme, see Fig. 1. Finally, the 

output message from the sensor module includes 

fault type and strength together with the image 

data, which could later be used for prognostic 

health management (PHM), for example. 

 

Fig. 1. Multi-level classification to determine a fault 

type and its associated intensity level. 

 
3. Dataset Gathering and Preparation 
In order to train a model that can categorize 

different fault types with different intensity levels 

we have developed a fault injecting tool for 

simulating different hardware and environmental 

related faults in the RGB camera, such as blur, rain, 

cracked lens, etc., see Mohammed (2022). From 

the graphical user interface (GUI) of the tool, a user 

can easily generate faulty data by selecting a 

desired fault type and intensity level. The tool 

generates a distorted form of the original frame 

corresponding to the selected fault type and 

intensity. The output faulty samples are set with a 

specific frame size and shape, compatible to the AI 

classifier. Moreover, the output data are 

automatically assigned with a specific file name in 
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order to meaningfully label the fault type and 

intensity, see Fig. 2. 

As already described in this article, only three 

levels of intensity are used, i.e., low, medium, and 

extreme. It is to be noted that, in this contribution, 

the intensity levels are assigned based on intuition. 

In future work, the fault implementation will be 

optimized and then the intensity levels will be 

based on quantitative approaches.  

The required dataset is generated from Flower 

Image Dataset, see Kaggle (2020), as an input for 

the fault injecting tool. The images are distorted 

with ten different fault types, each with three 

intensity levels, i.e., low, medium, and extreme. 

Accordingly, a name is assigned to each output 

image that includes the fault type and its intensity 

level, see e.g., Table 1 and. Fig. 2. 

 

 

 

 

Pre-processed images from the dataset are 

randomly split such that 90% are used for the 

training and the rest are used for the validation. 

Such uneven splitting are usually done to enhance 

the accuracy through the training process, in 

addition to the use of data augmentation to avoid 

overfitting. 

 

Table 1. Samples from the generated test.csv labels 

files. 

Fault 

Type 

Fault  

Intensity 

Frame path 

blur 1 ../test/27_blur_st_1.jpg 

crack 2 ../test/106_crack_st_2.jpg 

blur 3 ../test/88_blur_st_3.jpg 

rain 1 ../test/19_rain_st_1.jpg 

17,474 Samples are used for the training and 

validating sets, while 2,800 samples are used for the 

testing set. 

 

4. Fault Classification  

For a safety critical automated system that uses 

the camera as an input sensor it is important to use 

some measures to continuously monitor the 

reliability of the sensor data. A fault classification 

method is indeed a fault detection mechanism 

which would help to assess the risk or 

performance degradation of the system, see e.g., 

Mohammed et al. (2023) and Khound et al. 

(2023). In the later stages, using this evaluation 

would further facilitate fault diagnosis and 

execution of a fail-safe operation (Mohammed et 

al., 2023), see Fig. 3. 

 
Fig. 3. Lane-keeping system with the use of the fault 

type and intensity (Mohammed et al., 2023). 

Three convolutional neural network (CNNs) 

layers (O'Shea and Nash, 2015) are used with 

batch normalization (Ioffe and Szegedy, 2015) 

Fig. 2. Faulty RGB images generated by the fault

injection tool with different fault types and intensities. 
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and max-pooling layers (Scherer et al., 2010) after 

each one of the three layers, in addition to three 

fully-connected layers. Fig. 4 layouts the model 

architecture in detail. The same model adapted for 

classifying the fault type and predicting the 

corresponding fault intensity level. 

 
Fig. 4. Model architecture, output shape is [batch size, 

output channel, height resolution, width resolution], 

and last layer ‘Linear-16’ is [batch size, the 10 fault 

classes (or 3 in case of predicting the intensity level)]. 

 

4.1. Model for Fault Type Prediction 
The described model is trained for 200 epochs 

with the cross-entropy loss function (Ho and  

Wookey, 2019) and stochastic gradient descent 

(SGD) algorithm as an optimizer (Qian, Qi et al., 

2015) to classify the input image with the shape 

(3, 224, 224), i.e., (number of channels, height 

resolution, width resolution), into one of the ten 

classes below: 

 No fault (normal input without distortion). 

 Blurry image. 

 Cracked lens. 

 Condensation. 

 Darkened image. 

 Dirt on the lens. 

 No chromatic abbreviation correction. 

 Rain. 

 Sharpen image. 

 Speckle noise (or dead pixels). 
 

The model training accuracy is about 95.3 %. 

While during the testing, the model predicts the 

fault type with 93.8% accuracy. Fig. 5 and 

Table 2 quantify the quality of the fault prediction 

outcome. Some of the faults in the tool are 

implemented by overlaying the fault effect on the 

original image. This leads to easy detection of the 

fault, i.e., rain and condensation, see Table 2. 

Fig. 5. Training and loss curve for the training and 

validation. 

Table 2. Confusion matrix for the fault type prediction. 

The diagonal values represent the correct prediction of 

each fault, no-fault: 89%, blur: 87%, condensation: 

98%, crack: 92%, darkness: 99%, dirt: 91%, no 

chromatic abbreviation correction: 97%, rain: 100%, 

sharpness: 89%, speckle noise: 96%. 

No 

Fault 
0.89 0.01 0 0 0.02 0 0 0 0.07 0.01 

Blur 0.077 0.87 0 0 0.02 0 0.027 0.01 0 0 

Conde-

nsation 0.003 0 0.98 0 0 0.006 0 0 0.006 0 

Crack 0.003 0 0 0.92 0.017 0.01 0 0.037 0.01 0 

Dark-

ness 
0 0 0 0 0.99 0.006 0 0.006 0 0 

Dirt 0 0 0 0 0.017 0.91 0 0.07 0.003 0 

NCAC 0.006 0 0 0 0.02 0 0.97 0 0.033 0 

Rain 0 0 0 0 0 0 0 1 0 0 

Sharp-

ness 
0.1 0 0 0 0 0 0 0 0.89 0.003

Speckle 

Noise 
0.04 0 0 0 0 0 0 0 0 0.96 
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4.2. Model for the Fault Intensity Prediction 
As mentioned before, the same model is also used 

for predicting the fault intensity levels for each 

fault type, but the number of epochs for the 

training differs, depending on the choice of the 

fault. The model correctly predicts with very high 

accuracy for some of the fault types. But some 

other fault types need more time to achieve good 

accuracy and some even cannot reach more than 

44% accuracy, e.g., sharpness, see Table 3, 

Table 4, Table 5, and Table 6. 

Table 3. Confusion matrix for sharpness intensity 

levels. 

Low 0.31 0.11 0.58 

Medium 0.13 0.09 0.78 

Extreme 0.048 0.03 0.92 

 Low Medium extreme 

Sharpness intensity levels prediction accuracy: 

Low: 31%, medium 9%, and extreme: 92% 

 

Table 4. Confusion matrix for no chromatic 

abbreviation correction intensity levels. 

Low 0.82 0.14 0.04 

Medium 0.034 0.77 0.19 

Extreme 0.0014 0.041 0.96 

 Low Medium extreme 

No chromatic abbreviation correction intensity 

levels prediction accuracy: Low: 88%, medium 

77%, and extreme: 96% 

 

Table 5. Confusion matrix for darkened image fault 

intensity levels. 

Low 0.99 0.0055 0 

Medium 0.0082 0.99 0.0041 

Extreme 0 0.0014 0.99 

 Low Medium extreme 

Darkened image intensity levels prediction 

accuracy: Low: 99%, medium 99%, and extreme: 

99% 

 

Table 6 Confusion matrix for cracked lens fault 

intensity levels. 

Low 0.99 0 0.0027 

Medium 0 0.99 0.0068 

Extreme 0 0 1 

 Low Medium extreme 

Cracked fault intensity levels prediction accuracy: 

Low: 99%, medium 99%, and extreme: 100% 

 

5. Conclusion 

This contribution presents a method to classify the 

input RGB frame into ten classes, i.e., with no fault 

and nine other fault types, which can be used in any 

camera-based system, e.g., a lane-keeping system. 

This is indeed a fault detection method. Also, our 

fault injection tool is discussed, which is used to 

generate new faulty dataset from any available 

image dataset. The presented method includes two 

stages for the fault classification. The first 

classification stage classifies the type of a fault, 

including the no fault case, with an accuracy of 

93.8%. In the next stage, the corresponding 

intensity level of the already classified fault type is 

predicted. The model achieves a good prediction 

accuracy for certain faults like, blur, speckle noise, 

and no chromatic abbreviation correction. But for 

sharpness, the accuracy is only 44%, and the 

correctly predicted intensity mostly works for an 

extreme intensity level. Varying the fault 

implementation method could alter the result. For 

future work, a better fault implementation method 

with comparable intensity levels will be 

investigated. Moreover, a more realistic 

approaches for implementing the rain and cracked 

lens fault should be explored. 
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