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A faulty sensor data could not only undermine the stability but also drastically compromise the safety of autonomous
systems. The reliability of the functional operation can be significantly enhanced, if any monitoring modules can
evaluate the risk on the system for a particular fault in a sensor. Based on the estimated risk, the system can then
execute the necessary safety operation. To develop a risk evaluating algorithm, the relation between the faults and the
effects should be known. Therefore, to establish such cause-and-effect relationship, this paper presents a performance
indexing method that quantifies the effects caused by given fault types with different intensities. Here, the considered
system is a lane keeping robot and the only sensor used for the functional operation is a red, green, and blue (RGB)
camera. The lane keeping algorithm is modeled using a supervised artificial intelligence (AI) learning method. To
quantify the effects with performance indices (PIs), different faults are injected to the RBG camera. For an injected
fault type, the system’s PI is evaluated from the AI algorithm’s (open-loop) outcome and the lane keeping (closed-
loop) outcome. The lane keeping/closed-loop outcome is quantified from the trajectory data computed using the
strapdown inertial navigation algorithm with the measurement data from a 6D inertial measurement unit (IMU).

Keywords: fault injection, RGB camera fault, performance index, IMU trajectory, strapdown inertial navigation.

1. Introduction

For safety critical and real time applications, such

as automated driving, any faulty data from a

sensor could not only alter the driving perfor-

mance but could also lead to fatal consequences.

Therefore, to ensure the safety, the risk palliating

concepts, such as, fault detection, isolation and

recovery (FDIR) methods, are very useful. The

fault tolerant methods perform fault diagnosis for

executing a remedial action, see e.g., Blanke et al.

(2000); Gao et al. (2015). The health monitoring

schemes estimate the health of a system in real

time and are actively discussed field of research,

see e.g., Loureiro et al. (2014); Gomes and Wolf

(2021). The safety of an autonomous system can

be remarkably enhanced, if a monitoring module

can estimate the risk from a detected fault in real

time, such that a necessary action for fail-safe and

fail-operation can be executed before the occur-

rence of a system failure. The fault detection and
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risk estimation can guarantee reliable functional

operations. Note that different faults in the sensors

lead to different outcomes. Therefore, the prior

information of the cause-and-effect relationship

would be very useful for the risk evaluation. In

this context, the cause is the fault and the effect is

the respective system’s performance degradation

and failure. For numerical computations, the per-

formance degradation should be quantified. This

paper presents a method to evaluate and quantify

the performance of a lane keeping robot subjected

to different faults injected to the primary sensor,

i.e., an RGB camera. Here, this quantified value of

the outcome/performance degradation of the robot

in regard to safety is termed as the performance

index (PI).

There exist many fault injection methods, based

on signal conditioning (Yang et al., 2017) or ap-

plied to AI networks (Liu et al., 2017; Su and

Chen, 2022), sensor signals (Mitra et al., 2018;

Secci and Ceccarelli, 2020), etc. In Mitra et al.

(2018), perception errors are statistically injected

to the bounding box and their corresponding ef-

fects on the brake torque outputs of the wheels of

an autonomous vehicle are presented. In Secci and

Ceccarelli (2020), the analyses of the effects on an

autonomous driving application for different fault

types in an RGB camera are discussed. Indeed,

different fault types have certain effects on the

functional operation. Additionally, the intensity of

faults may amplify the effects to different degrees.

For example, a slightly blurry image would not

necessarily alter the lane keeping performance of

the robot, but if the image is extremely blurred, the

lane keeping operation could completely fail. In

this paper, the faults with different types and inten-

sities are injected to the input image of the RGB

camera. This emulates the possible hardware and

environmental faults on the sensor. Some common

examples of the fault types are blur, speckle noise,

broken lens, etc. Here, the intensity represents

a defined quantification of a fault type catego-

rized into three levels, i.e., slight, medium, and

extreme. For the fault injection, our in-house tool

is used (Mohammed, 2022a). The fault detection

and classification method to evaluate the fault type

and intensity developed for the RGB camera is

separately presented in Mohammed et al. (2023).

The final PI for each fault type and intensity

is computed by combining two quantities. The

first one is the deviation of the actuation out-

put of the AI algorithm from that of during the

normal operation, i.e., without any faults. This is

an offline/static/open-loop analysis. The second

quantity is the deviation of the final trajectory of

the robot from that of the normal operation and

this is an online/dynamic/closed-loop analysis.

This trajectory is estimated from 6D IMU sensor

data, i.e., the data from three orthogonal gyro-

scopes and accelerometers, using the strapdown

inertial navigation algorithm (S-INA) (Woodman,

2007). The dead reckoning solely based on a 6D

IMU is highly prone to errors and the results sig-

nificantly drift over time. Therefore, sensor fusion

with other sensors based on the extended Kalman

filter (EKF) is used for the inertial navigation,

see e.g., Malyavej et al. (2013). Currently, for

the presented system, only the 6D IMU sensor

is available for the trajectory estimation. Thus,

considering this increase in drift and inaccuracy,

the trajectory data will be obtained only for a

small section of the whole track within a short

duration of time. In Mohammed et al. (2023), the

preliminary concept for a risk index evaluation is

proposed for the same lane keeping robot. The

method partly uses an intuitive quantification of

lane keeping performance based on experimen-

tal observation, which is definitely not an opti-

mal way from a technical context. The proposed

method overcomes this by using the 6D IMU data

for assessing the quality of the lane keeping oper-

ation instead of any partial intuitive assessment.

The article is structured as follows: In Section 2,

the system’s architecture, functionality, and the

fault injection method are described. Section 3

presents the open-loop analysis method, demon-

strating some experimental results for some faults

and evaluating the relevant PIs from this method.

Similarly, the closed-loop analysis is presented in

Section 4. In Section 5, the final PI is evaluated

by combining the outcomes from the open-loop

and the closed-loop analyses. Finally, this paper is

concluded in Section 6.
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Fig. 1. The lane keeping robot.

2. Background

2.1. Hardware Architecture

Fig. 1 shows the lane keeping robot, which

was built at the University of Siegen during

a master thesis (Mohammed, 2022b). The pri-

mary hardware components of the system are:

TAMIYA 1:10 RC TT-02 (chassis), NVDIA Jet-

son Nano Developer Kit (processing unit), Intel

RealSense depth camera D435i (sensor module),

and PCA9685 (PWM motor driver). The sensor

module includes an RGB and depth camera sen-

sors with a 6D IMU. The IMU comprises of three

orthogonal gyroscopes and accelerometers. The

RGB camera is the main sensing unit of the sys-

tem that is used for the lane keeping algorithm.

The IMU is only used for the closed-loop perfor-

mance evaluation.

2.2. Lane-Keeping Algorithm

The main function of the system is to keep the

robot between two lane marks while driving on

a prescribed path. The lane marks are fixed in a

laboratory. The lane keeping algorithm is devel-

oped using the JetRacer project, see NVDIA-AI-

IOT (2021). This uses a residual neural network

(ResNet) with 18 deep learning layers, termed as

ResNet-18 (He et al., 2016). The camera sensor

feeds the RGB image data to the AI model in real

time. Then the algorithm accordingly evaluates

a suitable steering value that actuates a motor

connected to the front steering axle. The steering

value is in the range [−1, 1], where −1 and 1

are the maximum actuation input to turn the front

wheel steering axle to the left and right direction,

Lane-keeping 
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Robot
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command 
Actual 

scene
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+
+
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Fig. 2. The closed-loop system.

respectively. This steering action keeps the robot

between the lane marks. The robot is trained with

several scenarios to optimally keep itself between

the lane marks, e.g., when it is outside the lane, at

the extreme corner of a lane mark, within a curve

track, etc.

2.3. Fault Injection

Fig. 2 illustrates the overview of closed-loop sys-

tem with a fault. An in-house fault injecting tool

is developed for injecting different environmen-

tal and hardware related faults to the RGB cam-

era, see Mohammed (2022a). The tool provides a

graphical user interface (GUI) where a fault type

and intensity can be selected from the console. It

generates a distorted form of the original RGB

image corresponding to the selected fault type

with a specified intensity.

Fig. 3 shows examples of some faulty RGB

images generated by the tool with different fault

types and intensities. Here, only three levels of

intensity are used, i.e., slight, medium, and ex-

treme. These intensity levels for the fault types

blur, speckle noise, and no chromatic aberration

correction (NCAC) are implemented with the help

of some pre-implemented libraries to distort the

image data by manipulating certain image param-

eters, see Mohammed, 2022a. However, the rain

and crack are injected using the image overlapping

method. Thus, the overlapping images for each

intensity level are selected based on intuition. In

the future work, a suitable alternative approach

will be investigated for these overlapping fault

types.

3. Open-loop Analysis

The trained lane keeping AI algorithm of the

robot computes a suitable steering input for the
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Fig. 3. Some results from the fault injecting tool.
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Fig. 4. The lane keeping algorithm: the open-loop
system.

actuation based on the input RGB image obtained

from the camera sensor, see Fig. 4. For the open-

loop analysis, the robot is first driven through a

prescribed course, recording all the RGB input

images, in the sequence of occurrence, without

injecting any faults. Later, all the recorded im-

ages are distorted by injecting each fault type and

intensity shown by Fig. 3. The original and the

distorted images by each fault are then separately

fed to the AI algorithm and the associated steering

commands are stored in the same sequence of

occurrence, without actually running the robot.

Thus, this part analyzes the open-loop AI function

illustrated by Fig. 4 for different faults.

The deviation of the steering values (algo-

rithm’s outputs) corresponding to an injected fault

from that of the normal operation is evaluated

using the root mean square error (RMSE) (Mo-

hammed et al., 2023), given by

ΘT,I(n) =

√∑n
i=1 {θT,I(i)− θ(i)}2

n
,

s.t. 1 ≤ n ≤ N , (1)

where θ(i) is the steering value (algorithm’s out-

put) corresponding to the i-th input frame with-

out any faults. The variable θT,I(i) also denotes

the steering value but output from the distorted

input image with a fault type T and intensity I .

The parameter N represents the total number of

images arranged in the sequence of occurrence.

Hence, the variable ΘT,I(n) denotes the RMSE

for n samples in connection to the fault type and

intensity T and I , respectively. The higher the

RMSE value, the higher the deviation and, hence,

the worse the performance. The RMSE profiles for

all the combinations of the considered fault types

and intensities are shown in Fig. 5. The faults with

speckle noise and NCAC have consistently the

high values for all the intensity levels.

The final RMSE values for the entire N sam-

ples, i.e., ΘT,I(N), is normalized and used for the

PI evaluation, given by

PIOL
T,I =

ΘT,I(N)

max
∀T&I

{ΘT,I(N)} . (2)

Here PIOL
T,I represents the open-loop performance

index for a fault type and intensity T and I , re-

spectively. In Table 1, all the values of PIOL
T,I for

the considered faults are listed. This analysis is

static, hence, for the same set of inputs the eval-

uated PIs with respect to a fault type and intensity

will be the same for any number of tests.

4. Closed-loop Analysis

The closed-loop analysis studies the outcome of

whole system in action, illustrated by Fig. 2. For

a driving application, the trajectories data pro-

vides the outcome of the system. A reliable dead-

reckoning method is necessary to accurately es-

timate the trajectory. Moreover, the accuracy of

a dead reckoning relies on several sensors. How-

ever, the presented lane-keeping robot has only

a 6D IMU sensor for the trajectory estimation.

The 6D refers to three orthogonal gyroscopes and
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Table 1. The open-loop performance indies.

Faults Slight Medium Extreme
Intensity Intensity Intensity

Blur 0.2168 0.3584 0.6446
Rain 0.3100 0.5817 0.5046
Crack 0.2955 0.1875 0.3671
Speckle noise 0.7832 0.7786 0.8533
NCAC 0.9910 1.0000 0.9747

Blur Rain Crack

Speckle Noise No chromatic aberration correction
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Fig. 5. The open-loop RMSE profiles.

accelerometers. The S-INA is used to estimate

the trajectory from the rotational velocity and the

acceleration data (Woodman, 2007). Note that, the

accuracy of a trajectory cannot be expected only

from the 6D IMU, due to drift, quantization errors,

random noises, etc., see Woodman (2007). Here,

this inaccurate estimation is used only to illustrate

the concept of the PI modeling. It is worth noting

that in Brossard et al. (2020), the accuracy of the

dead-reckoning only from a 6D IMU is signif-

icantly enhanced by combining the results from

the S-INA and a pseudo measurement using an in-

variant EKF (IEKF). The noise parameters of the

IKEF is adapted in real time based on some deep

neural networks. In the future work, the focus will

be to enhance the localization method by either

adding more sensors to the robot or exploiting the

method presented in Brossard et al. (2020).

4.1. Trajectory Estimation Method

The S-INA involves updating the rotation matrix

with single integration and then applying double

integration to obtain the position data. The rota-

tion matrix Rsb(t) from the body-fix to the static

inertial coordinate frame is updated at each time-

step dt as

Rsb(t+ dt) = Rsb(t) exp {Ωb(t) dt} , (3)

where Ωb(t) is the skew symmetric representation

of the angular rate ωb. The vector ωb is indeed the

gyroscope data corresponding to the xb, yb, and zb
axes of the body-fix frame, given by

ωb(t) =
[
ωb,x(t) ωb,y(t) ωb,z(t)

]T
. (4)

It is important to be consistent with the order of

the rotational convention. Here, the yaw-pitch-roll

rotational order is considered to transform from

the inertial to the body-fix frame, hence,

Ωb(t) =

⎡
⎣ 0 −ωb,z(t) ωb,y(t)

ωb,z(t) 0 −ωb,x(t)

−ωb,y(t) ωb,x(t) 0

⎤
⎦ , (5)

see Woodman (2007). Following the matrix up-

date and stating the initial state as stationary, the

acceleration of the robot with respect to the static

inertial reference frame is obtained using

a(t) = Rsb(t) ab(t)− ag(0) , (6)

where ab(t) is a vector containing the accelerom-

eter data corresponding to the xb, yb, and zb axes

of the body-fix frame, i.e.,

ab(t) =
[
ab,x(t) ab,y(t) ab,z(t)

]T
. (7)
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Here ag(0) is the initial acceleration of the

static frame due to gravity. Finally, the posi-

tion with respect to the static inertial frame, i.e.,

(x(t), y(t), z(t)), and from a stationary initial

condition is obtained by

x(t) =

∫ t

0

(∫ τ2

0

a(τ1)dτ1

)
dτ2 . (8)

For the above computations, the initial condi-

tions should be first assigned. The static coor-

dinate frame is transformed when the robot is

stationary, such that

ag(0) =
[
0 0 −|ab(0)|

]T
. (9)

The modulus operator |·| over a vector denotes the

magnitude of the vector. So, |ab(0)| is the magni-

tude of the acceleration due to gravity measured

by the accelerometer during the stationary condi-

tion. Following this, the initial rotation matrix is

Rsb(0) =

⎡
⎣ cos γ − sin γ 0

sin γ cos γ 0

0 0 1

⎤
⎦

×
⎡
⎣ cosβ 0 sinβ

0 1 0

− sinβ 0 cosβ

⎤
⎦

×
⎡
⎣ 1 0 0

0 cosα − sinα

0 sinα cosα

⎤
⎦ . (10)

Here, γ, β, and α denote the initial yaw, pitch,

and roll angles, respectively, that are required to

transform the static inertial coordinate frame to

the initial body-fix frame such that the accelera-

tion due to the gravity in the static inertial frame

is given by Eq. (9). Considering the yaw-pitch-roll

rotation sequence, γ is equal to zero and the other

parameters are evaluated by solving⎡
⎣ − sinβ

(cosβ sinα)

(cosβ cosα)

⎤
⎦ = −|ab(0)|−1 ab(0) , (11)

see Pedley (2013).

4.2. Trajectory Deviation Evaluation

For the closed-loop PI evaluation, the deviation of

trajectory data due to an injected fault from that of

without any fault is obtained using the RMSE as

well. The RMSE at a time t is given by

ΔT,I(t) =

√∫ t

0

∣∣xT,I(τ)− x(τ)
∣∣2 dτ

t
,

s.t. t �= 0 . (12)

The vector xT,I(t) denotes the position of the

robot with respect to the static inertial frame when

a fault with type T and intensity I is injected to the

input image data. Similar to the open-loop PI eval-

uation, the closed-loop PI (PICL
T,I ) is evaluated by

normalizing the RMSE for a total time tF , i.e.,

when the trajectory does not drift significantly.

This is given by

PICL
T,I =

ΔT,I(tF )

max
∀T&I

{ΔT,I(tF )} . (13)

Ideally, tF should cover the entire track. But as

already mentioned, the S-INA based only on a

6D IMU are prone to errors and the results drift

over time. Therefore, here, this value is around 6 s

which only covers a small section of the entire

track. The RMSE profiles from the closed-loop

experiments are shown in Fig. 6. The calculated

values of the closed-loop PI, i.e., PICL
T,I , are orga-

nized in Table 2. The limitations of a 6D IMU ad-

versely affect the repeatability of the results with

random drifts. Therefore, just for the presentation

of the concept, each PI value in Table 2 is obtained

from a single test.

5. The Final Performance Index

The open-loop deviation described by PIOL
T,I out-

lines the variation in the actuation commands.

While the closed-loop deviation quantified by

PICL
T,I describes the fluctuation in the transmis-

sion dynamics. Both these parameters measure

the performance of the fault injected system com-

pared to the ideal operation. Therefore, the final

PI is defined by combining these two parameters,

given by

PIT,I =
b PIOL

T,I + (1− b) PICL
T,I

max
∀T&I

{
b PIOL

T,I + (1− b) PICL
T,I

} ,

b ∈ {0 , 0.25 , 0.50 , 0.75 , 1.00} , (14)
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Table 2. The closed-loop performance indies.

Faults Slight Medium Extreme
Intensity Intensity Intensity

Blur 0.3228 0.5417 0.4872
Rain 0.4561 0.5373 0.5310
Crack 0.3067 0.4197 0.4430
Speckle noise 0.3462 1.0000 0.6196
NCAC 0.1664 0.5197 0.4602

Blur Rain Crack

Speckle Noise No chromatic aberration correction

,
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)

Time (s)
(a) Faults with slight intensity
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Fig. 6. The closed-loop RMSE profiles.

where b is a bias factor, with four possible val-

ues. This factor is equal to zero when the bias is

completely towards the closed-loop results. The

value 0.25 means that the majority of the weight

is towards the closed-loop analysis. This should be

the ideal preference when the trajectory data can

be accurately obtained. Thus, 0.50 implies that re-

sults from both the analyses are equally weighted,

and vise-versa. The trajectory data computed by

the S-INA only from a 6D IMU sensor data is

not accurate. Therefore, here the bias is 0.75. The

final PI values corresponding to all the considered

fault types and intensities are shown in Table 3.

The higher the value of the PI, the worse the

performance.

6. Conclusion

This contribution presents a performance indexing

method to quantify the performance of a lane

keeping robot subjected to different faults to the

primary sensor, i.e., an RGB camera. The faults

injected to the RGB image data are categorized

into different types and intensities. The PI is evalu-

ated by combining the results from open-loop and

closed-loop analyses using a biasing factor. Based

on this factor, the final PI is inclined more towards

one of the analysis results. The open-loop analysis

involves computing the deviation of the steering

actuation based on the fault injected input data

from that of the normal data. While in the closed-

loop analysis, the deviation of the final trajectory

data of the fault injected system from that of

the normal one is calculated. Indeed, the closed-

loop approach applies to the system run-time and

the open-loop approach lacks the ground-truth.

Therefore, ideally the bias should be more to-

wards the closed-loop approach. However, here,

the trajectory data is estimated only from a 6D

IMU sensor using the S-INA. The dead-reckoning

solely based on a 6D IMU suffers from extreme

drift, quantization errors, and random noises. Con-

sidering this limitation of the presented system,

the bias is set more towards the open-loop results,

which is definitively not ideal. Hence, in the future

work, focus will be on enhancing the trajectory

estimation method using sensor fusion techniques.
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