
Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

Edited byMário P. Brito, Terje Aven, Piero Baraldi, Marko Čepin and Enrico Zio
©2023 ESREL2023 Organizers. Published by Research Publishing, Singapore.
doi: 10.3850/978-981-18-8071-1_P217-cd

SafetyKube: Towards Orchestration at the Edge for Critical Production Systems

Yousuf Al-Obaidi, Ioannis Sorokos

Fraunhofer Institute for Experimental Software Engineering, Germany.
E-mail: {yousuf.al-obaidi, ioannis.sorokos}@iese.fraunhofer.de

Andreas Schmidt

Dependable Systems and Software, Saarland Informatics Campus, Germany.
E-mail: schmidt@depend.uni-saarland.de

Various trends, such as changeable lot-size-1 manufacturing, put production systems under pressure to become more
flexible—a (r)evolution referred to as Industry 4.0. While this transformation is challenging for the physical assets,
the same is true for the digital infrastructure that drives production. However, timely and flexible orchestration of
computing, networking, and storage resources has been tackled by research and implementations in cloud and edge
computing. What is missing are safety aspects that are essential in critical production environments. In this paper, we
conduct a safety analysis of the orchestration task. We then propose new components for an established orchestration
solution (Kubernetes)—allow handling of failure modes present in vanilla Kubernetes. Finally, we discuss the
benefits and drawbacks of our approach and highlight future research directions to make safe orchestration a reality.

Keywords: Industry 4.0, Safety, Edge Computing, Internet of Things, Kubernetes, Containers, Orchestration

1. Introduction

Industrial manufacturing is behind consumer sys-

tems in terms of Information Technology (IT)—

mainly due to manufacturing devices being de-

signed for longer system lifetimes and the indus-

try’s scepticism about technology developed for

consumer use cases. While this might have been

legitimate when these technologies arose, this is

no longer the case for various components (e.g.

PROFINET is an industrial, Internet-inspired and

-compatible network stack). Due to challenges in

global supply chains and rapid shifts in customer

demands, industry must develop reconfigurable

production networks in contrast to static produc-

tion lines—one facet of Industry 4.0 (I4.0). This

development involves a paradigm shift in IT adop-

tion: Instead of reinventing IT solutions, indus-

try should look at existing, open-source solutions

from the cloud and edge computing domain (cf.

Shi and Dustdar (2016)).

However, the scepticism with respect to de-

pendability (and in particular safety) is still legiti-

mate when it comes to orchestration, a central task

of edge/cloud computing. In operating systems,

the ELISA Project (2022) is a first step to retrofit

an open source component (Linux), which was

not initially intended for safety-critical applica-

tions. The Apex.AI project (Pöhnl et al. (2022))

did a safety certification of the ROS2 middle-

ware, which was also not developed for safety-

critical use. In this paper, we follow a similar

line by investigating what the open source system

Kubernetes (K8S) is lacking to make it useable

in safety-critical applications. e.g., I4.0. Eventu-

ally, this technical solution can contribute towards

tackling the challenges in I4.0 safety assurance

by Jaradat et al. (2017).

The contribution of this paper is three-fold:

(1) We analyze generic edge computing work-

loads for hazards and risks related to the orches-

tration process. (2) We propose Kubernetes exten-

sions that enable critical workloads (description

files, custom controller, custom scheduler) to be

managed with reduced risk. (3) We apply and

discuss our approach on a worked example.

Next, we discuss background and related work

in Sec. 2. A use case description (Sec. 3) is then

followed by a safety analysis (Sec. 4). Our solu-

tion is described in Sec. 5 and discussed in Sec. 6.

Sec. 7 concludes the paper and gives future work.

942



943Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

2. Background

Reconfigurable software systems regularly lever-

age the microservices architecture, container vir-

tualization, and orchestration, such as Pallasch

et al. (2018); Govindaraj and Artemenko (2018);

Denzler et al. (2020) and KubeEdge (2022); Star-

lingX (2022); Azure IoT Edge (2022). Software

containers are a promising technology for imple-

menting edge computing in industrial settings—

in particular due to their granular encapsulation.

However, orchestrators currently lack essential

properties for industrial applications, such as real-

time (RT) operation and safety.

Kubernetes (K8S) is the de facto standard, open-

source orchestration tool used in cloud ser-

vices (cf. Datadog (2020)). In addition, K8S is

used in edge computing orchestration, due to its

high configurability, extensibility, and modularity.

K8S consists of one or more master nodes and

multiple worker nodes (often just called master

and nodes)—forming a cluster. The cluster or-

chestrates resources or objects (we avoid the term

resources here, to avoid confusion with physical

compute resources). Pods are objects representing

the smallest unit of workload in K8S and consist of

one or more containers (e.g., Docker containers).

Pods often come wrapped in other K8S objects

such as deployments. A deployment is a contin-

uously running workload with a specified number

of replicas in the cluster. The master node hosts

the control plane of K8S, which consists of several

modular components. The two components of in-

terest to us are the scheduler and controllers. The

scheduler, as the name suggests, schedules pods

on nodes according to available resources. The

controllers deal with specific K8S objects, such

as deployments, and manage their lifecycles. K8S

objects such as pods or deployments are usually

created using a so-called manifest file. The file

describes the to-be instantiated K8S object with a

declarative API and specifies the object type.

Related Work Recently, many authors aim to

bring K8S to industrial automation by enabling RT

analysis during the pod scheduling phase. Struhár

et al. (2021) have extended the architecture of

K8S by defining a new interface for deployment of

containers and admission control for RT and best-

effort containers. A more recent and similar work

by Fiori et al. (2022) has enabled K8S to deploy

RT software containers with the use of a hierar-

chical scheduler and Linux’s earliest deadline first

scheduling policy (SCHED_DEADLINE). Barletta

et al. (2022) have added criticality levels and net-

work requirements in addition to RT analysis to the

orchestration process of K8S.

Monaco et al. (2022) focused on resource shar-

ing extensions for supporting mixed-criticality ap-

plications in K8S by stronger isolation and moni-

toring solutions.

Fewer authors address the safety concerns of

edge computing software. Desai and Punnekkat

(2019) researched the safety of fog-based au-

tomation systems and identified several threats

to safety arising from fog attributes such as the

overhead of the virtualization of control loops, RT

response, and resource management. The authors

have proposed design aspects for a conceptual

safety framework at the fog level.

In our work, we address some of their high-

lighted concerns and focus, on a more practi-

cal level, by implementing a solution with the

K8S orchestrator. According to Etz et al. (2020),

the current static approach of designing safety-

critical systems impedes the flexibility promises

of I4.0. They propose self-organizing safety sys-

tems and automatic generation of suitable This is

useful when considering the challenge of deploy-

ing safety-related software on a pool of computing

resources. However, implementing such a method

is out of scope of this paper, and we limit our-

selves to manual configurations.

3. System and Use Case

Since safety is an emergent property of systems,

it is useful to describe our problem as a systems

problem and look at the existing hierarchy and

emergence (as recommended by Leveson (2016)).

Each hierarchical layer controls the layer below

by enforcing constraints on the behavior. The ap-

plication of human robot collaboration is taken as

a use case and our system is illustrated in Fig. 1.



944 Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

Fig. 1. System diagram showcasing the layers

The Field Layer is the lowest layer with devices

and actors, such as a robot and a human worker.

When we observe the integrating application (hu-

man robot collaboration for pick and place ap-

plication), the safety problem emerges and we

move upwards in the layer hierarchy. Typically,

the emergence of safety issues is captured with

a hazard analysis and risk assessment. For our

use case, the hazards are collision (H1), pinch-

ing (H2), and overthrowing of objects by the

robot (H3). To address these hazards, we have to

impose constraints on upper layers.

The Robot Cluster Layer represents the soft-

ware that controls the field. The control software

is deployed as pods that run on the cluster’s

nodes. Decoupling software into pods allows for

increased flexibility and configurability, as well

as for update roll-outs of the robot system soft-

ware. The robot system software and applications

are comprised of many containerized modules

deployed as pods. Several pods are responsible

for monitoring and low-level control of the robot.

These modules are abstracted in three pods: De-

vice Controller, Robot Health Monitor Service,

Path Planning Module. Applications can be writ-

ten to manipulate and command the robot (Motion

Program, Linear Translation Motion Program). A

functional safety concept (namely step-wise speed

scaling) was developed to reduce the risk of haz-

ards and enforce limiting the robot’s movement.

The technical safety implementation is a sensor

module (at the lower layer) and safety pods (to

enforce the constraints on the robot). The sensor

is responsible for detecting nearby humans and

relaying a signal to the safety pods. The software

in the pods implements ConSerts (Conditional

Safety Certificates) monitors (cf. Schneider and

Trapp (2013)), which exchange safety demands

and service guarantees between the sensor and the

robot. The ConSerts monitor pods (Scanner Con-

Sert Monitor and Robot Safe Speed ConSert Mon-

itor) are deployed to process sensor signals and

send commands to slow or stop the robot based on

human presence and distance respectively. With

these two pods, proper constraint enforcement on

the robot’s movement can be achieved. For the

collaborative application to be considered safe,

any motion control pod must be accompanied by

the Robot Safe Speed ConSert Monitor pod.

The Orchestrator Layer Typically, pods have

safety requirements that must be fulfilled. These

requirements involve the non-functional proper-

ties the system must provide, such as time critical-

ity, failure handling and recovery, freedom from

interference (FFI), etc. Fulfilling these require-

ments is achieved in an upper layer focusing on

requirements and process management. The solu-

tions are then built into the system by choosing the

appropriate hardware and configuring it correctly,

as well as employing an operating system that

ensures the desired properties and constraints of

the safety software’s environment. Traditionally,

the whole system is considered a single unit. Edge



945Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

computing follows a different approach in that

software deployment is more flexible with the help

of an orchestrator. The orchestrator is constraining

the deployment of the pods and maintaining their

desired safe state (as specified in the manifest

file). This is achieved by scheduling the pods with

the K8S scheduler on nodes that satisfy the pods’

resource requirements, and by maintaining them

with the controllers.

4. Safety Analysis

Requirements Safety is the absence of catas-

trophic consequences on the user(s) and the en-

vironment (cf. Avizienis et al. (2004)). K8S is

a general-purpose orchestrator for cloud applica-

tions (microservice architecture) focused on scal-

ing and reducing downtime. In industrial applica-

tions, software must be designed and implemented

while respecting safety requirements, and this is

where the following analysis becomes relevant.

Our particular concern is the orchestrator’s ability

to guarantee the correct deployment of software

with sufficient resources onto the cluster nodes

to facilitate safe execution. To orchestrate safety-

critical software components with K8S, several

constraints and measures have to be implemented

to adapt its functional model of deploying pods.

The goal is to unambiguously and correctly spec-

ify the safety-related requirements of the orches-

trated pods. The safety analysis focuses on identi-

fying hazardous actions that can be taken by K8S.

The safety pod requirements that K8S has to satisfy

can be summarized as:

REQ1 No motion program pod shall be allowed

to run without the safety pods.

REQ2 Safety pods shall always have the re-

sources they require.

REQ3 The tasks in the safety pods shall be pe-

riodically executed and shall meet their

deadlines.

REQ4 The safety pods shall be able to communi-

cate with other pods while respecting the

maximum tolerable latency.

REQ5 In any case where the safety pods fail,

all other pods shall be stopped and pre-

vented from starting until the safety pods

are up and running again.

REQ6 FFI shall be satisfied for safety pods.

We assume security requirements are satisfied

and we do not address malicious attacks.

Failure Mode and Effects Analysis (FMEA) We

apply a functional qualitative FMEA to determine

K8S behaviors that could potentially lead to the

hazards (H1-3). Failure modes are derived from

K8S’s nominal function (cf. the official Kubernetes

(2023) documentation) and from possible viola-

tions of safety pod requirements. The full FMEA

table can be found onlinea.

The analysis shows a lack of system or

application-wide failure policies, in the sense that

the dependency on the safety pods cannot be de-

scribed, let alone their relevant failures handled

(failures 1–5). In addition, the implicit or inade-

quate description of K8S objects leads to problems

with meeting required resources after deployment

(failures 6–8). K8S’ lack of awareness of the con-

text of the deployed pods results in possible un-

planned or unverified coexistence of pods, which

cannot be prevented (failure 10). This potentially

violates the FFI assumption of a safety pod (failure

9) or leads to a false safety claim. By context we

refer to a group of pods with a common safety

goal. This means that the collection of software

applications within a certain context must always

be safe to be deployed together. Any pod that does

not belong to that context shall not be allowed to

run along the ones that do. Several failure modes

can be mitigated or prevented with a common

solution. To address the hazardous failure modes

in the orchestration process of K8S, we propose

the following extensions: a) a strict interface to

create and describe K8S safety-critical objects,

b) a safety-context-aware custom K8S controller,

c) RT schedulability analysis capable scheduler,

and d) runtime overload monitoring.

5. Implementation

The first three extensions are implemented using

native customization of objects, controllers, and

a https://gitlab.cc-asp.fraunhofer.de/yalobaid/safety-kube/-

/tree/main/FMEA



946 Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

schedulers. Custom objects are created with a

custom resource definition (CRD) and allow new

objects to be managed by the K8S API. A custom

controller is implemented via K8S client libraries

to manage objects. Custom schedulers are created

using the modular scheduling plugins framework.

The fourth extension is a reactive overload mon-

itor with minimal overhead—implemented using

Linux kernel tracing. We open source the code b.

Critical Deployment Custom Object (CDCO)

defines an interface (an abstraction) for creat-

ing and describing critical objects in the clus-

ter. A CRD object is used to create the new

CDCO. After that, the CDCO is available for Cre-

ate/Retrieve/Update/Delete operations in the K8S

API. The CDCO is defined by the following prop-

erties in the manifest: safety context, target node,

RT period, prerequisites, interfaces, max. memory,

max. network delay, worst-case execution time

(WCET), service object, and failure policy.

The safety context and prerequisites both en-

sure a safe deployment. The former is respon-

sible for setting the object’s safe context and

protecting its FFI assumption. The latter en-

ables the implementation of a safety depen-

dency on the orchestration level between the

critical deployments. For example, a critical de-

ployment with context1 as safety context and

safetymonitor as a prerequisite, means that

the related object can only be deployed when the

cluster is running the context1 safety context,

and the safetymonitor critical deployment

is also running. The manifest file also contains

RT properties necessary to determine whether RT

tasks will meet their deadlines (i.e. period, WCET,

network delay). The current implementation as-

sumes that each pod has one container with one

RT task (in future work, we plan to lift this to more

than one RT task or container). A failure policy

is an application-wide policy to be applied when

a failure occurs (e.g. shutting down all the pods

when a certain pod fails).

Critical Deployment Controller manages the

b https://gitlab.cc-asp.fraunhofer.de/yalobaid/safety-kube/

new custom object. This controller extends the

K8S control plane, responsible for both the pods’

and the overall application’s safety. During the

critical deployment object’s lifecycle, the con-

troller continuously monitors it and takes actions

as appropriate. The controller checks the safety

contexts and prerequisites, creates pods to meet

the specified resource requirements, and handles

failures. The currently implemented failure poli-

cies are the following: a) ContextShutdown: ter-

minates all critical deployments with the same

context. Requires manual restart. b) AffectedShut-

down: terminates the failed deployment and its

dependencies only. c) ContextRestart: restarts all

critical deployments. d) AffectedRestart: restarts

the failed deployment and its dependencies only.

Real-time Scheduler is developed based on the

plugins framework of the K8S scheduler. The

schedulability analysis uses partitioned fixed pri-

ority rate monotonic scheduling (cf. Liu and Lay-

land (1973)). For each node, we isolated cores and

labelled them accordingly. Without the full view

of the RT task set at each scheduling cycle, the

scheduler assigns the pod’s task a halfway Linux

RT priority based on its period (from 1 (lowest)

to 99 (highest)). For example, the first task to

be scheduled on a core receives priority 50, the

second task would either receive 25 (if its period

is larger) or 74 (if it is shorter), and so on. If more

than one task shares the same period, the tie break

would be based on Linux’s FIFO scheduler, i.e.,

the task that acquired the CPU first retains it.

The schedulability analysis works as fol-

lows: First, we apply the necessary utilization

check (Utilization ≤ 1 for a single core). If

the check passes, we assign priority according

to rate-monotonic scheduling and check the suf-

ficient condition of Liu and Layland (1973). If

it holds, we deem the pod schedulable on that

node’s core. Otherwise, we follow the classical

response time analysis Joseph and Pandya (1986),

to see whether the schedule is still feasible with

the new task. If not, we proceed to the next core.

The schedulability test is applied at the filter plu-

gin stage. If the node fails the test on all of its

cores, it is eliminated from the K8S scheduling



947Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

process. The winning node would pin the pod’s

process on the specified core and runs it with the

assigned priority that makes the schedule feasi-

ble. Eventually, RT communication is considered,

as message exchanges between nodes must also

comply with safety-critical thresholds. As our so-

lution is independent of specific RT networking ap-

proaches (e.g. Time-Sensitive Networking (TSN)),

we do not yet consider this and an integration is

future work.

Overload Monitor uses kernel tracing solutions

to check that tasks are not missing deadlines dur-

ing runtime. The process uses tracepoints in the

Linux scheduler for task entry and exit times.

Based on this information, the monitor updates the

critical deployment objects when necessary, for

the controller to take appropriate actions.

Intended Workflow The K8S manifest files can

be exploited as the safety contracts of pod spec-

ifications. These manifest files are examined and

used in the safety argument for the execution in-

frastructure and the execution context. The man-

ifest files contain a complete specification of the

non-functional properties and capabilities that the

safety-critical software requires to behave as in-

tended and keep the overall system within its safe

states. The intended workflow of a safe orches-

tration is: a) a distributed containerized applica-

tion is developed, b) the container’s resource re-

quirements and safety context are specified and

tested on target hardware platforms, c) critical

deployment manifest files are created to run the

pods and their containers safely, and d) the critical

deployment objects are deployed in the cluster.

In the current solution, the deployed pods are con-

tinuously running programs. The containers of the

pods do not terminate to indicate the completion

of an operation. Safety-related pods are not called

upon to be deployed by a process or a situation.

Still, they are deployed together with the rest of

the distributed application, and they are intended

prerequisites for deploying and running applica-

tion pods. The critical deployment controller en-

sures that only when prerequisites of a pod are

running, the pod can be scheduled. In case of

hazardous failures, the failure-handling policies

are executed by the critical deployment controller

to restore the distributed applications to a safe

state.

6. Discussion

Application of Workflow to Use Case The

use case that was discussed previously in

Sec. 3 is used to demonstrate our safety ex-

tensions to K8S. At design time, the safety-

critical software is developed, to implement

safety and control actions according to the

safety requirements. In our demonstrator, this

represents creating the containers showcased in

Fig. 1. Here, the safety context is determined as

CollaborativePickAndPlace. Any soft-

ware that does not implement this context shall

be prevented from running in the same cluster as

the ones that do. In addition, since the stepwise

speed scaling and safety scanner functionality are

decoupled from the motion and control program,

it has to be made a specific prerequisite. This way,

the motion program pod is stopped or prevented

from being deployed when the ConSert monitors

are not running. At configuration time, the criti-

cal deployment manifest files are created. A re-

quirement for this is determining the target nodes,

required peripheral devices, and the WCET on the

nodes. The software must be deployed to the cor-

rect node that meets the required resources and

allows execution without violating the specified

WCET. The critical deployment manifest must

specify a list of cluster nodes where the pod’s

execution is permitted. The labeling mechanism

of K8S is then used in node assignment. With this

workflow, introducing new software components

requires returning to the design stage to reanalyze

the safety implications of the new software on the

given safety context.

Test Environment The implementation is real-

ized and tested on a cluster with one master and

three Revolution Pi Core as nodes. Each node

runs a Linux kernel with the preempt-rt patch

and has two isolated cores. The control plane

runs on the master node, which is hosted on an

Ubuntu 20.04 virtual machine. The extensions are



948 Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

deployed in the master node and start watching

for critical deployment objects. All members of

the cluster connect via wired Ethernet. The crit-

ical deployment objects are created in the K8S

cluster via the kubectl command line interface.

The custom controller detects their creation and

creates the corresponding pods. Upon creation,

the RT scheduler analyzes the candidate nodes

with respect to both schedulability and available

resources—and assigns the pod to a node.

Failure Handling Performance Fast failure han-

dling response is sometimes necessary to quickly

execute failure policies and return to a safe state.

Our proposed solution does not account for tim-

ing constraints with respect to failure handling.

However, we have made a preliminary investiga-

tion into the matter. In native K8S, status monitor-

ing (node health, pods status) can be configured

to high frequencies, but this is doubtful, as offi-

cial documentation only mentions failure detec-

tion in the range of seconds. In our experiments,

the minimum node health check interval is 400

milliseconds—anything less would cause instabil-

ity. This is, however, achieved with a control plane

hosted on a virtual machine run by a machine with

modest capabilities. If the safety requirements for

failure-handling response times are stringent, then

K8S-based orchestration is, in any case, not an

ideal choice. Redundancy can be used to reduce

the probability of complete service failure. There

is native support for redundancy in K8S by means

of replica sets. Replicas can be configured to

spread out across the nodes, which lowers the

probability of complete failure of a safety appli-

cation. Nevertheless, software redundancy with

orchestration is only possible on systems that are

not dependent on existing wiring and hardware

and, in some cases, (standby redundancy) require

redundancy protocols as described by Johansson

et al. (2022).

Standard Compliance A major challenge of

orchestration-based edge computing in industrial

automation is safety certification. All the solu-

tions in this work leverage Linux features. Al-

though its kernel is often used in industry, to

this day, there is no certified Linux for safety

applications. The ELISA Project (2022) develops

a framework to certify a Linux configuration. An

essential aspect of software safety is achieving

FFI (cf. IEC 61508-3). As scheduling pods and de-

ploying them on specific nodes is done at runtime

and without a predetermined schedule, this be-

comes particularly relevant. The containerization

process in Linux provides low-overhead isolation

between processes (termed ’weak isolation’ when

compared to hypervisors and virtual machines, be-

cause processes share the kernel). Spatial memory

isolation is done inherently in Linux by means of

virtual memory spaces and limiting a pod’s max-

imum amount of memory. The RT behavior of the

Linux kernel is crucial to realize temporal isola-

tion, as it assures deterministic scheduling of crit-

ical tasks. Our evaluation uses the preempt-rt
patch to achieve low-latency responses. However,

the preempt-rt patch relies only on testing

statistics for assuring the RT behavior, i.e., testing

latency with various loads and priorities for a long

duration. Furthermore, the RT processes were iso-

lated and pinned on separate isolated cores (spatial

isolation). In addition, containers in Linux hide

the filesystem, restrict the view of the system’s

other running process, and constrain interprocess

communication as well as access to peripheral

devices.

7. Conclusion

We present SafetyKube, a set of Kubernetes ex-

tensions for safer orchestration of critical produc-

tion systems. We review concrete safety-critical

applications and use safety analysis to derive re-

quirements for our proposed solution—including

extended application description files with infor-

mation such as worst-case execution time or real-

time execution period. A critical deployment con-

troller leverages this information to place parts

of the distributed application on nodes that en-

able a safe collaboration. An RT scheduler as-

sesses and enforces that the parts of the applica-

tion have enough time to execute their function

safely. Lastly, we specify a monitoring compo-

nent capable of measuring and reporting incidents

of system overload, where safety is under risk.



949Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

Together, these parts allow safeguarding against

certain faults occurring from orchestration.

In future work, we look further into the question

of what is needed to bring K8S to critical envi-

ronments. While we extend K8S in this work, it

remains open whether changing or rewriting its

core services is a more suitable and sustainable

approach. Finally, we intend to investigate how to

automate the generation of safety configurations.

Acknowledgement

The German Federal Ministry for Economic Affairs
and Climate Action (BMWK) supported this work
within the research project “FabOS” under grant
01MK20010A. The European Union Horizon 2020 pro-
gramme supported this work within the “Secure and
Safe Multi-Robot Systems (SESAME)“ grant agree-
ment 101017258. This work was funded by the German
Research Foundation (DFG) grant 389792660 as part of
TRR 248 – CPEC (see https://perspicuous-c
omputing.science).

References

Avizienis, A., J.-C.
Laprie, B. Randell, and C. Landwehr (2004). Basic
concepts and taxonomy of dependable and secure
computing. IEEE transactions on dependable and
secure computing 1(1), 11–33.

Azure IoT Edge (2022). Microsoft. https://azur
e.microsoft.com/en-us/products/iot
-edge/. Accessed: 2022-10-12.

Barletta, M., M. Cinque, L. De Simone, and
R. Della Corte (2022). Introducing k4. 0s: a model
for mixed-criticality container orchestration in indus-
try 4.0. arXiv preprint arXiv:2205.14188.

Datadog (2020). Container report. https://www.da
tadoghq.com/container-report-2020/.
Accessed: 2022-10-12.

Denzler, P., J. Ruh, M. Kadar, C. Avasalcai, and
W. Kastner (2020). Towards consolidating industrial
use cases on a common fog computing platform. In
International Conference on Emerging Technologies
and Factory Automation (ETFA), pp. 172–179. IEEE.

Desai, N. and S. Punnekkat (2019). Safety of fog-based
industrial automation systems. In Proceedings of the
Workshop on Fog Computing and the IoT, pp. 6–10.

ELISA Project (2022). Elisa: Enabling linux in safety
applications. https://elisa.tech. Accessed:
2022-10-12.

Etz, D., T. Frühwirth, and W. Kastner (2020). Flexible
safety systems for smart manufacturing. In Inter-
national Conference on Emerging Technologies and
Factory Automation (ETFA), pp. 1123–1126. IEEE.

Fiori, S., L. Abeni, and T. Cucinotta (2022). Rt-
kubernetes–containerized real-time cloud comput-
ing.

Govindaraj, K. and A. Artemenko (2018). Container
live migration for latency critical industrial appli-
cations on edge computing. In International Con-
ference on Emerging Technologies and Factory Au-
tomation (ETFA), pp. 83–90. IEEE.

Jaradat, O., I. Sljivo, I. Habli, and R. Hawkins (2017).
Challenges of safety assurance for industry 4.0. In
2017 13th European Dependable Computing Confer-
ence (EDCC), pp. 103–106. IEEE.

Johansson, B., M. Rågberger, T. Nolte, and A. V. Pa-
padopoulos (2022). Kubernetes orchestration of high
availability distributed control systems. In Proc.
ICIT.

Joseph, M. and P. Pandya (1986). Finding response
times in a real-time system. The Computer Jour-
nal 29(5), 390–395.

KubeEdge (2022). Why kubeedge. https://kube
edge.io/en/docs/kubeedge/. Accessed:
2022-10-12.

Kubernetes (2023). Kubernetes. https://kubern
etes.io/docs. Accessed: 2023-02-28.

Leveson, N. G. (2016). Engineering a safer world:
Systems thinking applied to safety. The MIT Press.

Liu, C. L. and J. W. Layland (1973). Scheduling
algorithms for multiprogramming in a hard-real-time
environment. JACM 20(1), 46–61.

Monaco, G., G. Gala, and G. Fohler (2022, 01). Exten-
sions for shared resource orchestration in kubernetes
to support rt-cloud containers.

Pallasch, C., S. Wein, N. Hoffmann, M. Obdenbusch,
T. Buchner, J. Waltl, and C. Brecher (2018). Edge
powered industrial control: concept for combining
cloud and automation technologies. In Int. Conf. on
Edge Computing (EDGE), pp. 130–134. IEEE.

Pöhnl, M., A. Tamisier, and T. Blass (2022). A mid-
dleware journey from microcontrollers to micropro-
cessors. In Design, Automation & Test in Europe
Conference & Exhibition (DATE), pp. 282–286.

Schneider, D. and M. Trapp (2013). Conditional
safety certification of open adaptive systems. ACM
Transactions on Autonomous and Adaptive Systems
(TAAS) 8(2), 1–20.

Shi, W. and S. Dustdar (2016). The promise of edge
computing. Computer 49(5), 78–81.

StarlingX (2022). Documentation. https://docs
.starlingx.io/. Accessed: 2022-10-12.

Struhár, V., S. S. Craciunas, M. Ashjaei, M. Behnam,
and A. V. Papadopoulos (2021). React: Enabling
real-time container orchestration. In International
Conference on Emerging Technologies and Factory
Automation (ETFA), pp. 1–8. IEEE.


