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This paper aims to investigate the characteristics of offshore wind turbine failures. Four hypotheses on failure
features are proposed and strictly examined by statistical tests. Cox model is chosen to model failure process. Three
forms of co-variates are designed to research their influence on failures. Their coefficients are obtained by maximum
likelihood estimation and Breslow estimator is calculated. Finally, goodness-of-fit tests verify the assumptions of
Cox model. Results of long-term models show that wind significantly favors the growth of baseline hazard. However,
temperature and production condition mildly reduce it. The effects will gradually become stable if accumulation time
increases. Similar results are observed in models with principal components of co-variates. Comparison of models
suggest the highest likelihood belongs to models with three accumulated co-variates.
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1. Introduction

Failures of offshore wind turbines (OWTs) are

influenced by many different factors such as en-

vironment, maintenance, and turbine technologies

(Cevasco et al., 2021). Among all factors, en-

vironmental loads is the key to design effective

maintenance strategies on offshore system (Ad-

umene and Ikue-John, 2022). This paper aims to

explore failure properties of OWTs and quantify

the influence of environment on failures.

From 2000 to 2017, connections between en-

vironment and wind turbine failures are investi-

gated by traditional statistical techniques. Applied

stochastic processes include Homogeneous Pois-

son Process (HPP) and non-homogeneous Poisson

Process (NHPP), especially Power Law Process

(PLP). Recently machine learning has been ap-

plied to quantify weather influence (Reder et al.,

2018).

Nevertheless, most researches are based on on-

shore databases and not directly applicable to

OWTs (Li et al., 2022). The main challenge in

offshore area is data availability. Although super-

visory control and data acquisition (SCADA) is

applied, high-quality offshore failure data is still

scarce in the public domain. To fulfill the research

gap, this paper attempts to investigate:

• the stochastic process that best explains the

failure associated with a single offshore turbine

• the influence of wind, temperature, power con-

dition on errors of offshore turbines

• the extent to which the accumulation duration

of environment influences the baseline hazard

The rest of paper is organized as follows: Sec-

tion 2 elaborates researches in OWTs failures.

Section 3 introduces data and hypotheses. Meth-

ods for tests and models are summarized in section

4. Section 5 provides results and discusses them.

Conclusions are in section 6.

2. Literature review

Earlier in the 2000s, Tavner et al. study turbine

failures based on onshore data from Windstats.

HPP and PLP are used to fit data in his work.

there is a 44% cross-correlation between the wind

index and failure rate with 95% confidence level

(Tavner et al., 2006, 2007). Factors that Tavner has
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confirmed include rated power, maximum temper-

ature, location, wind turbulence, wind speed and

humidity etc. Among them, maximum wind speed

has the closest correlation with failures (Tavner

et al., 2013).

As Kaidis et al. summarize in 2015, probability

distribution is suitable for non-repairable system

and point process applies to describe repairable

systems. Their research of onshore SCADA data

uses Weibull distribution for major repairs and

PLP model for manual restarts and minor repairs.

It is proposed that bathtub curve should not be

taken for granted on turbine failures.

Slimacek and Lindqvist states that it is hard

to figure out cause-effects of heterogeneous fac-

tors on wind turbines by traditional HPP and

there possibly exists unobserved factors. They

develop NHPP with nonparametric frailty and

covariates and test them on onshore turbines

in WMEP database (Slimacek and Lindqvist,

2016a,b, 2017). Results show that coefficients

of environment have a seasonal effect on failure

process. Besides, they verify the improvement of

wind turbine technology over the years.

Except stochastic processes, non-parametric

mixture models are also applied to explore the

relationship between weather and UK onshore

farms (Wilson and McMillan, 2013). They con-

clude failure probabilities of controller system and

drive train models increase with wind. Correlation

analysis from Su et al. show that power index

and failure rate have similar periodicity and strong

correlation. Data mining and apriori rule mining

techniques also succeed to find that relative hu-

midity, ambient temperature, wind speed has a re-

lation with failures in critical components (Reder

et al., 2018).

Overall, most researches are based on onshore

wind turbine data. HPP, PLP and NHPP are suit-

able candidates for failure data analysis with ex-

ternal factors. However, there lacks researches on

OWTs. Secondly, model selection is not clearly

presented in researches. Besides, quantification

of weather effects are generally calculated on a

wind farm level. To deal with the gap, this pa-

per presents a systematic analysis on failures of

OWTs with environmental influence.

3. Hypotheses and data

3.1. Hypotheses

Four hypotheses are listed based on literature re-

view. Three variables are selected, maximal wind,

average temperature, total power.

• H1.0: Failure process does not have a trend.

• H2.0: The trend is monotonic.

• H3.0: Three variables does not have an effect

on failure process.

• H4.0: Accumulation duration does not influ-

ence coefficients of variables.

3.2. Dataset

EDP (Energias de Portugal) open databasea pro-

vides two-year SCADA records from 5 OWTs in

the West African Gulf of Guinea (Menezes et al.,

2020). 200 failures of turbine T01 are extracted

from command records. Signal data records am-

bience, grid activities and internal state of OWTs

every 10 min from 2016 to 2017.

3.2.1. Ambient data

Pair plot of three variables is in figure 1. Aver-

age temperature has the minimal correlation with

other two variables.

Fig. 1. Pair plots for selected variables

ahttps://www.edp.com/en/innovation/edp-open-data
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3.2.2. Failure data

Failure is defined as the occurrence of error event

(Wilkinson and Hassan, 2011). Failures are event

logs that are solved by remote, automatic, or

manual restarts (Carroll et al., 2016). Stream of

failures satisfies a counting process {Nt, t ≥ 0}.

Cumulative number of failures Nt counts how

many events happen in (0, t]. Calendar times of

failures are denoted as T1, T2, T3, ... T200. Inter-

arrival time Xi is calculated as Xi = Ti − Ti−1.

Figure 2 shows Xi and Ti.

Fig. 2. Xi and Ti over failures

To facilitate plots, T0 = 0 is added to the

data stream. Figure 3 plots Xi,Nt, temperature

and wind speed over months. The change of tem-

perature and wind over seasons approximately fit

tropical climate near the gulf of guinea.

Fig. 3. Monthly view

4. Methods

Figure 4 illustrates the whole procedure of data

processing. Four assumptions are examined by

trend test, monotonicity tests, parameter estima-

tion. Results from statistical tests provide guid-

ance for model selection and construction.

Error data
, 

rend test

GAD
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No RP model
, 

Monotonic
Significant U, Z, J
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models
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Fig. 4. Flow chart for procedure

4.1. Counting processes and trend test

Trend Renewal Process (TRP), a generalized Re-

newal Process (RP) with a trend , is introduced to

differentiate counting processes. As Kvaløy and

Lindqvist point out, all the HPP, RP and NHPP

are special cases of TRP. Conditional intensity γ

given history F of TRP is expressed as (Kvaløy

and Lindqvist, 2003; Lindqvist et al., 2003):

γ(t|F) = z(Λ(t)− Λ(TN(t)))λ(t) (1)

In this equation, Λ(t) =
∫ t

0
λ(u)du . z(t) is a

hazard rate function that depends on the system

age and the time from the last failure. λ(t) is a

non-negative trend function. If λ(t) is constant,

it becomes a RP. Moreover, HPP is the special

condition of RP where both Λ(t) and z(t) are

constant. When z(t) = 1, TRP becomes NHPP.

Different processes are shown by figure 5.

Z(t)=1
�(t)

Z(t)
�(t)=C

Z(t)=C
�(t)=C

Z(t)=C
�(t)

Fig. 5. Properties of processes (Vaurio, 1999)

For trend analysis, generalized Anderson-
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Darling (GAD) test based on RP is adopted. GAD

has good performance against monotonic and non-

monotonic trends (Kvaløy and Lindqvist, 2003).

GAD =
nX̄2

σ̂2

n∑
i=1

[
q2i ln

(
i

i− 1

)
+

(qi + ri)
2
ln

(
n− i+ 1

n− i

)
− r2i

n

]
(2)

Calculation of parameters qi, ri, σ̂
2 is:

qi =
Ti − iXi

Tn
(3)

ri =
nXi

Tn
− 1 (4)

σ̂2 =
1

2(n− 1)

n∑
i=1

−1(Xi+1 −Xi)
2 (5)

GAD applies a smaller but consistent estima-

tor σ̂2 of variance instead of the usual estima-

tor in typical Anderson-Darling (AD) statistic.

Thus GAD is more powerful than AD. However,

GAD still measures the deviation from a Brown-

ian bridge and has the same limit distribution as

AD. Hence, this paper adopts critical values of

Brownian bridge from asymptotic tests by Kiefer

(Antoch and Daniela, 2007; Kiefer, 1959). They

are 0.461, 0.580, 0.743, separately at 5%, 2.5%

and 1% significance level.

4.2. Monotonic and non-monotonic tests

For mononicity, Vaurio presents a summary of six

statistics for monotonic trends and non-monotonic

trends. U , Z, J test monotonic trends. V1, V2, V3

tests non-monotonic trends such as the bathtub

curve. The null assumption is that T1, T2, T3,...,

Ti are uniformly distributed on (0,Tn], which in-

dicates no trend. Under the same assumption, the

six statistics follow different distributions. U is

laplace test, and Z is Mil-Hdbk-189 test.

U =

∑n
i=1 Ti − nTn/2

Tn

√
n/12

∼ N(0, 1) (6)

Z = 2

n∑
i=1

log(Tn/Ti) ∼ χ2(2n) (7)

As Vaurio summarizes, U and Z are not always

effective especially when the σ is much larger or

smaller than mean X̄ . Therefore, J is introduced

by changing the numerator of U . J is approxi-

mately Student´s t-distribution and tests RP ver-

sus monotonic trend.

J =

∑n
i=1 Ti − nTn/2

σ[n(n+ 1)(n+ 2)/12]1/2
∼ t(n) (8)

Still under the same null assumption, V1 and V2

obeys standard normal distribution and V3 is χ2

distribution. These three statistics have the power

to detect non-monotonous failure intensity.

V1 =

∑n
i=1 |Ti − Tn/2| − nTn/4

Tn

√
n/48

∼ N(0, 1)

(9)

V2 =

∑n
i=1 |Ti − Tn/2|2 − nT 2

n/12

T 2
n

√
n/180

∼ N(0, 1)

(10)

V3 = 2
n∑

i=1

log(Tn/|2Ti − Tn|) ∼ χ2(2n) (11)

4.3. Cox model
4.3.1. Basic assumptions

To construct Cox model, {Ti − T1, 1 ≤ i ≤ 200}
is adopted as input {ti}. It represents survival time

measured from the calendar time of first error T1.

In equation 12, maximal wind speed θ1, average

temperature θ2, and total power θ3 are collected

at the nearest time before {ti}. β1, β2, β3 are

parameters to be estimated.

λ(t) = λ0(t)exp(θβ) (12)

θ =
[
θ1 θ2 θ3

]
,β =

⎡
⎣β1

β2

β3

⎤
⎦ (13)

4.3.2. Parameter estimation

Estimation of coefficients adopts partial log likeli-

hood. This method estimates β without assump-

tions on λ0(t). The objective function f(β) is

constructed as follows:

f(β) = −
n∑

i=1

[
θβ − ln

n∑
i

exp(θβ)

]
(14)

Minimizing f(β) based on β is equal to maxi-

mizing partial log likelihood of cox model, which
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is a nonlinear optimization problem. Estimated β

are used to calculate Breslow estimators λ̂0(ti)

and survival probability Ŝ(ti) (Lin, 2007).

λ̂0(ti) =
1∑n

i exp(θβ̂)
(15)

Ŝ(ti) = exp(−
∫ ti

0

eθβ̂λ̂0(ti)dt) (16)

4.3.3. Accumulation form of co-variates

s, p, q are the accumulated duration of wind,

temperature, and power before failure happens.

Because there lacks some weather data, the maxi-

mum time for tracing back is 270 minutes. When

s, p, q equal to 10 min, 200 failures are fully used

to estimate parameters, while the rest can only use

199 failures due to data missing.

θ =
[∑L1

s=1 θ1(s)
∑L2

p=1 θ2(p)
∑L3

q=1 θ3(q)
]

(17)

4.3.4. PCA form of co-variates

It is likely that co-variates correlation lead to

compensation and reduction of parameters. Prin-

ciple component analysis (PCA) are used to re-

duce the influence by dividing original informa-

tion into three uncorrelated principle components

(PC). Using all the PCs do not lose any informa-

tion. New co-variates θ are set to:

θ =
[
PC0 PC1 PC2

]
(18)

4.3.5. Goodness of fit tests

Kolmogorov-Smirnov (KS), Cramér–von Mises

(CM) and Anderson-Darling (AD) tests are cho-

sen to test proportional assumption of Cox Model.

They build on empirical distribution function

(EDF) that estimates cumulative distribution func-

tion (CDF) step by step (Cockeran et al., 2021).

Under the null hypothesis, ε̂1, ε̂2, ..., ε̂i comes

from an exponential distribution. ε̂i is calculated:

ε̂i =

n∑
i=1

λ̂0(i)∑n
i exp(θβ̂)

(19)

Computationally efficient formula are given as

follows (D’Agostino and Stephens, 1986):

˜KSn = max
{
KS+

n ,KS−n
}

(20)

KS+
n = max

1�i�n

[
i

n
− (1− e−ε̂i)

]
(21)

KS−n = max
1�i�n

[
(1− e−ε̂i)− i− 1

n

]
(22)

For CM and AD tests, statistics are constructed

as follows:

CMn =
1

12n
+

n∑
i=1

[
(1− e−ε̂j )− 2i− 1

2n

]2

(23)

ADn = −n−
n∑

i=1

2i− 1

n

[
ln(1− e−ε̂i)− ε̂n+1−i

]
(24)

5. Results and discussions

5.1. Statistical tests

Results are given in the table 1. GAD=2.265,

which significantly rejects the null assumption

H1.0 that rend is highly significant. Hence, RP is

not good for modeling the process. For monotonic

tests, only Z and V3 are significant.

Table 1. Results of 7 statistics

Statistics Value p-value

GAD 2.265 <0.01**

U 0.524 0.300

Z 152 2.917e-32***

J 0.286 0.386

V1 -1.054 0.146

V2 -0.735 0.231

V3 182 4.477e-23***

Significance: p < 0.001%***, p < 0.01%**, p < 0.1%*.

As Vaurio explains, Z and V3 has the power to

determine whether a process is NHPP with power-

law type intensity and Weibull type hazard rate.

For NHPP with power law intensity, Z and V3

will follow distribution χ(2n)/B where B is the

power. 5% critical value range for χ(2n) is [354.6,

447.6]. Because both Z and V3 falls outside of the

lower limit 354.6, B is likely to be larger than 1.

Therefore, NHPP model is suitable.

5.2. Cox model

Estimation results for basic model 12 show that

β1 for wind is -0.592, β2 for temperature is -1.087,
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and β3 for power is 0.306 when accumulation time

is 10 min. Three coefficients give the maximal

partial log likelihood -858.940. The hypothesis

H3.0 is rejected due to nonzero coefficients.

Fig. 6. Baseline hazard and covariates’ influence

Figure 6 presents the overall influence exp(θβ̂)

from covariates on baseline hazard λ̂0(ti) over

calendar time. Overall influence based on 10-min

accumulation is less than 1. However, the influ-

ence exceeds 1 if accumulation time is 270 min.

Estimated baseline hazards are similar in both

cases. Figure 7 plots the estimated number of

errors from two models and the real curve. Three

lines are almost overlapped, which suggests Cox

model give a good performance of estimation.

Fig. 7. Comparison of estimation and reality

Table 2 presents the goodness of fit tests for

Cox-snell residuals ε̂i. They do not reject the null

assumption that {ε̂i} comes from a standard expo-

nential distribution, which satisfies the assumption

of Cox model.

Table 2. Goodness of fits for 10min model

Statistics Origin PCA No power

KS 0.036 0.036 0.033

p-value 0.952 0.952 0.980

AD 0.306 0.306 0.282

critical value 0.919 0.919 0.919

CM 0.058 0.058 0.050

p-value 0.830 0.830 0.875

5.3. Comparison of Coefficients

Figure 8 presents coefficients over accumulation

time. Temperature keeps a negative influence on

hazard growth. If accumulation time is less than

50 minutes, maximal wind speed decreases hazard

growth and power production increases it. After

50 minutes, their influences change towards the

opposite direction.

Fig. 8. Coefficients for wind, temp and power

To test the effect of power, test 2 removes power

from covariates. Test 1 refers to the model in

figure 8. Figure 9 shows the change of coefficients

of temperature and wind.

Fig. 9. Coefficients after removing power
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Coefficients for PCs are plotted in figure 10.

PC0 represents 50% to 60% of total information.

PC1 occupies 30% and PC2 has 20% to 10%.

PC1 finally obtains changeless negative coeffi-

cient. Coefficient of PC2 keeps increasing and

PC0 almost has no influence.

Fig. 10. Coefficients for PCA components

Negative likelihoods for three models are

sketched in the figure 11. It suggests that more

information enhances the likelihood of observing

200 failures and 3 components of PCA does not

reduce any information from original covariates.

Fig. 11. Negative loglikelihood

5.4. Discussion of results

Based on results, wind positively increases hazard

in the long run. However, power and temperature

decrease it. Even if power is removed, temperature

still has a negative coefficient. Model with PCs

confirms factors that reduces the growth of hazard

rate. There are some possible explanations:

In terms of failure cause, low temperatures lead

to brittleness or freezing of lubricants, and tem-

perature variations cause material to expand or

contract (Tavner et al., 2013). Because the turbine

is located in the Gulf of Guinea, it is likely that

tropical climate has a positive influence on turbine

survival.

As for power, its coefficient changes from 0.5

to -0.5 and the reason behind could be grid adjust-

ment. Negative loads represent wind generators

can deliver current but voltage is imposed by elec-

trical system at the connection point (Daniel et al.,

2013). In the long run, this adjustment is good for

improving the reliability of wind turbines.

All the three models suggest that accumula-

tion duration influences the power of co-variates

on hazard rate. The more information fed into

the model, the more stable the power of the co-

variates. Short-term observations are not sufficient

to produce robust results.

There are several limitations to this study. The

first limitation is the lack of prediction and main-

tenance optimisation. The second limitation is that

synergistic effects of variables and unobserved

variables were not investigated. Future work can

include adjusting the accumulation period, adding

unobserved factors or other signal variables.

6. Conclusions and future work

This paper presents a comprehensive statistical

analysis of the failure associated with a single

offshore wind turbine. Seven statistical indices are

utilized to evaluate the type of failure process. The

Cox model is employed to model the process, and

three forms of covariates are utilized. The main

conclusions of the current work can be itemized

as follows:

• The failure process of the investigated turbine

has been shown to be a non-homogeneous Pois-

son process with a non-monotonic trend.

• In the long run, the growth of hazard rate is

accelerated by the maximal wind, while the

growth is delayed by the average temperature

and the power condition.

• The influence of temperature, wind, and power

on hazard rate growth varies with the accumu-

lation duration.

In summary, the performance of Cox model is sat-
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isfying and results can be used as reference Future

work will focus on extension of Cox model such

adding unobserved co-variates, failure prediction

and maintenance optimization.
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