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Suitability of two algorithms for learning chip defect detection based on high-dimensional measurement data from
wafer fabrication is examined, some results from applying them to real-world chip data are reported and a selection
of mathematical properties of the indicator used in one of the algorithms is presented. In a number of series of
experiments and parameter studies with different product types, the algorithms turned out to be effective in detecting
the binary overall defect state of measurement steps for which measurement data is available, and in reducing input
data dimensionality and/or sample count.
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1. Introduction and Related Work

Methods of Machine learning (ML) and artificial

intelligence, being a research field in rapid devel-

opment, have started to become omnipresent in

data mining tasks and got boosted in popularity

by multiple layer feedforward artificial neural nets

(Rumelhart et al. (1986)) and deep learning, re-

current neural networks and others, enabling new

applications like autonomous driving or chatbots

recently—Sarker (2021), Mandic and Chambers

(2001), Kiran et al. (2022), Gao et al. (2022).

Starting with perceptrons (Rosenblatt (1962)

and Minsky and Papert (1969)), a wide variety

of ML methods has been developed for differ-

ent purposes since the mid of the 20th century.

Among these there are outlier detection meth-

ods (Domingues et al. (2018), Olschewski et al.

(2020)) based on angle analysis (Kriegel et al.

(2008), Pham and Pagh (2012)), Isolation Forest

(Liu et al. (2008)), rapid distance-based outlier de-

tection (Sugiyama and Borgwardt (2013)), SVM

(support vector machines) by Cortes and Vapnik

(1995) and Boser et al. (1992), and the methods

of Sumikawa et al. (2013) for wafer classification,

just to name some few examples. Other ML ap-

proaches include stochastic learning of disjunctive

normal forms (Valiant (1984) and Valiant (1985)).

See Angluin and Laird (1988), Kearns and Li

(1993) and Ben-David et al. (2003) for results on

the complexity of constructing binary raters using

single monomials.

Recent multinational research projects like

iRel4.0 (iRel4.0 (2020)) and Productive 4.0 (Pro-

ductive4.0 (2017)) emphasize the importance of

improving product reliability in wafer fabrication.

In this paper, we examine the suitability of two

algorithms for learning defect detection in high-

dimensional chip data, one (Section 2) based on

a fractional integer indicator, one (Section 3) re-

lying on detecting certain specifics of the feature

distributions, and two algorithms for dimensional

reduction (Section 2.1 and description in Section

3). The data material is composed of analog (volt-

ages, currents . . .) and digital (count- and flag-

register contents . . .) values from chips on semi-

conductor wafers. See Baker (2010) for funda-

mentals. Both classifiers aim at restricting opti-

mization steps to low-dimensional search spaces

for the sake of improving explainability of results

(Barredo Arrieta et al. (2020), Samek et al. (2021),

Zeiler and Fergus (2014)), finding global optima

and reducing the number of internal constants to

be specified in the presence of small numbers of

samples (Rumelhart et al. (1986)).

1.1. Formal setting

We consider some lot of m chips, each represented

by n measurements, as a matrix X ∈ R
m×n

where missing values in some column are replaced
2693
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by the lower median of all non-missing values in

this column. The type and sequence of measure-

ments is the same for all chips.

For both of the two algorithms, we apply

column-wise auto-scaling to X as preprocessing:

x∗
i,j =

xi,j−μj

σj
(or 0 if σj = 0) where μj and

σj are the mean and standard deviation of the j-th

column, respectively.

Set B = {0, 1}. We assume one bit vi ∈ B

being assigned to every chip represented by the

i-th row xi of matrix X , which induces a parti-

tioning {1, . . . ,m} = I− � I+. In our terms, a

positive chip (vi = 1) is always defective. Let

H : Bn → N�0 be the Hamming weight.

1.2. The tasks

The types of tasks we want to solve are formalized

as follows (Olschewski et al. (2020), Olschewski

(2021b) and Olschewski (2021a)). Given is a lot

consisting of m chips with n measurements xi,j

and valuation vi each, represented by matrix X ∈
R

m×n and v = (v1, . . . , vm) ∈ B
m. We will write

“chip i” for the i-th chip xi = (xi,1, . . . , xi,n).

Given the xi,j and vi for chips i in a small

training set I ⊂ {1, . . . ,m}, predict the

valuation vk ∈ B of the remaining chips

k ∈ {1, . . . ,m} \ I of the lot, based on their

measurements xk = (xk,1, . . . , xk,n).

The chip measurements are partitioned into dif-

ferent measurement steps such as S1, S2, S3 in

course of wafer fabrication. Determinants for the

difficulty level of the task include: (i) product

type, m, n, (ii) measurement steps from which

data is available, (iii) size of sample sets, and

(iv) type of sampling: by random or prescribed by

former needle card insertions.

2. Algorithm Using Fractional Indicator

See Algorithm 1. Let θ = θt : R → {0, 1} be

some thresholding function like χ[t,∞) and I−, I+

as in Section 1.1. c can be set by optimizing

for Cohen’s kappa (for example) of the two 0-

1 vectors (v1, . . . , vm) and
(
P (1), . . . , P (m)

)
,

skipping indices in T .

Input: X ∈ R
m×n auto-scaled by column

Input: I−, I+ with

I− � I+ = {1, . . . ,m},

� ∈ {min,max,mean, ...}
Input: θt : R → B, threshold t > 0

Input: cutoff c > 0

Output: T ⊂ I+, z�(i), P (i) for

i ∈ {1, . . . ,m} \ T
for i ∈ {1, . . . ,m} do

for j ∈ {1, . . . , n} do
x∗
i,j := θt(xi,j)

end

end

Select some training set T ⊂ I+ randomly

for i ∈ {1, . . . ,m} \ T do
x∗
i , x

∗
k := column i, k of X∗

z�(i) := �
{ 〈x∗

i ,x
∗
k〉

H(x∗
i )

| k ∈ T
}

end

for i ∈ {1, . . . ,m} \ T do

P (i) :=

{
1, z�(i) � c

0, z�(i) < c

end

Algorithm 1: Z(X, I−, I+,�, θt, t, c)

2.1. Dimensional reduction

Function dim-reduce(X, s) (Algorithm 2) keeps

only those columns j∗ of X in which there are

at least s positive chips i satisfying |xi,j∗ | =

max{|xi,1|, . . . , |xi,n|}. Reducing n translates

into reducing the measurement count directly.

2.2. Results

2.2.1. Detecting Iris type

When applied to the classic Iris flower data set

(Fisher (1936), Dua and Graff (2017)), zmax of

Algorithm 1 classifies setosa, versicolor and vir-

ginica with kappa values 0.928, 0.557 and 0.797,

respectively, using 20% to 30% training set size.

2.2.2. Detecting chip defects

In this series of classifications by Algorithm 1, the

influence of dimensional reduction by Algorithm
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Input: X =∈ R
m×n auto-scaled by

column, {1, . . . ,m} = I− � I+

Input: sharpness s ∈ N�0

Output: E ∈ R
m×n∗

, n∗

for i ∈ I+ do
M := max{|xij | : j ∈ {1, . . . , n}}
MaxIndicesi := {j ∈ {1, . . . , n} :

|xij | = M}
end

for j = 1 . . . n do
NumOccuj :=∑
i∈I+

|MaxIndicesi ∩ {j}|

end

k := 0

for j = 1 . . . n do

if |NumOccuj | � s then
k := k + 1

for i = 1 . . .m do
ei,k := xi,j

end

end

end

n∗ := k

Algorithm 2: dim-reduce(X , sharpness)

2 as a preprocessing step on the results is exam-

ined. 34550 chips (one lot) with 150 measure-

ments per chip of product D had to be classified

by computing zmin in one run for S2 �="0" with

10% training set |T | and thresholding function

θt(x) = χ[t,∞) with t = 0.1.

As can be seen in Table 1, 115 (76.7%) of the

150 features can be omitted by Algorithm 2 with

only a small decrease in classification quality:

kappa 0.837 instead of 0.870 and TP
FP > 20 instead

of TP
FP = 1086

0 = +∞.

Figures 1, 2 and 3 belong to the “Sharpness 10”

line of Table 1: zmin indicator over chip number—

all positive objects relocated to the left for better

visibility—, indicator histograms on all (all pos-

itive, all negative, resp.) objects, kappa value of

the prediction in dependency of the zmin cutoff

c. See Olschewski (2021b) for more results by

Algorithm 1.

Table 1. Dimensional reduction in

classifying S2�=“0” for product D.

Sharp- #Feat. %Feat. Accu Kappa
ness omit. omit. %

0 0 0 0.991 0.870

1 92 61.3 0.991 0.866
2 102 68.0 0.987 0.821
3 103 68.7 0.986 0.800
4 103 68.7 0.986 0.800
5 107 71.3 0.984 0.776

10 115 76.7 0.989 0.837

20 126 84.0 0.981 0.712
25 133 88.7 0.964 0.377
30 135 90.0 0.959 0.223
40 138 92.0 0.959 0.040

3. Algorithm Matching Modes

See Algorithm 3. In computing histograms, if

multiple intervals have maximum frequency, then

we use the interval with the lowest index for

Fig. 1. S2�=“0” for product D with dimred sharpness
10.
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Fig. 2. zmin histogram for S2�=“0” of product D with
dimred sharpness 10: all (all positive, all negative) ob-
jects.
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I(j). Sorting {1, . . . , n} by decreasing ndiff(j)

values assigns every j its rank r(j) where r(j) =

1 means highest ndiff value. Given some t ∈
{1, . . . , n}, we call the t columns with highest

ranks “Cics” (candidate indicator columns).

Reducing the n features to those occurring in C

as in Algorithm 3 works as a dimensional reduc-

tion.

3.1. Results

3.1.1. Detecting Iris type

Algorithm 3 with nb = 5 or 6, using 60%/1%

positive/negative training sets and columns #3 and

#4 as Cics classified the classic Iris flower data

set (Fisher (1936), Dua and Graff (2017)) with

kappa values 0.937 (setosa), 0.727 (versicolor)

and 0.756 (virginica).

3.1.2. Detecting S3 fails with feature reduction

Algorithm 3 has also been used for S3 feature

reduction in finding those S3 fail chips which are

neither S1- nor S2-fails. One data lot of product G

consists of 1661 measurements from 6412 chips.

Table 2 lists some results. Kappa values can be

improved further by leaving out data of all chips

already classified as S1 or S2 fails.

In mode [S] (or [A]), only the sample chips

(or all chips) are used for deriving the Cics. See

also Figures 4 and 5.

See Olschewski (2021a) for results of different

tasks by Algorithm 3.

Fig. 3. S2 �=“0” for product D with dimred sharpness
10: kappa value over cutoff.
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Input: X ∈ R
m×n column-wise

auto-scaled, I+ � I− = {1, . . . ,m}
Input: sample sets T+ ⊆ I+, T− ⊆ I−

Input: t = #Cics to be used, cutoff c > 0,

nb ∈ N�3

Output: P (i) for

i ∈ {1, . . . ,m} \ (T+ ∪ T−)
for j = 1 . . . n do

Compute histogram (nb bins) of j-th

column, limited to rows i ∈ T+

I(j) := most frequent interval

npos(j) := |{i ∈ T+ : xi,j ∈ I(j)}|
nneg(j) := |{i ∈ T− : xi,j ∈ I(j)}|
ndiff(j) := npos(j)− nneg(j)

end

(j1, j2, . . . , jn) := unique permutation of

{1, 2, . . . , n} satisfying:

ndiff(j1) � ndiff(j2) � · · · � ndiff(jn)

∧ ∀k ∈ {1, . . . , n− 1}:

[ndiff(jk) = ndiff(jk+1) ⇒ jk < jk+1]

C := {j1, . . . , jt}
for i ∈ {1, . . . ,m} \ (T+ ∪ T−) do

SC(i) :=
∣∣{j ∈ C : xi,j ∈ I(j)}∣∣

P (i) :=

{
1, SC(i) � c

0, SC(i) < c

end

Algorithm 3: MatchMode(X, I+, I−, T+, T−,
t, c, nb)

Table 2. Finding true S3 fails while reducing feature

count.

Mode #Feat. Train Train Accu Kappa #Samples
used Pos% Neg% % Pos/Neg

[S] top:950 50 50 98.4 0.579 75/3131
[S] 83 75 0.01 99.7 0.653 113/1
[S] 63 50 0.01 99.3 0.595 75/1
[S] 43 50 50 95.2 0.024 75/3131

[A] top:950 50 50 99.9 0.986 75/3131

4. Some Stochastical Analysis of z� in
Algorithm 1

Assume n, r ∈ N�1, Bn∗ = B
n \ {0n}, 〈a, b〉 =

r∑
i=1

aibi and H(a) =
r∑

i=1

ai. Let x ∈ B
n be
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a random vector of independent, identically dis-

tributed (i.i.d.) coordinates x1, . . . , xn and p =

Pr [xi = 1]. Set Xi =
xi

H(x) if x ∈ B
n∗ and Xi = 0

if x = 0n (i = 1, . . . , n). Set e1(n, p) =
1−(1−p)n

n

(if clear from context: e1). Clearly, E [Xi] =

e1(n, p).

For every fixed y ∈ B
n, set Zy = 〈x,y〉

H(x) (or 0)

if x ∈ B
n∗ (or x = 0n). Then Zy =

n∑
i=1
yi=1

Xi and

E [Zy] = H(y)e1(n, p).

Definition 4.1.

e2(n, p) =
1

n

n∑
k=1

(1− p)n−k − (1− p)n

k

(if clear from context: e2).

Theorem 4.1. E
[
X2

i

]
= e2(n, p) ∀i, p ∈ (0, 1).

Proof. Let b(x, y) =
∑n

k=1

(
n
k

)
1
kx

kyn−k for

x, y � 0. Then by linearity of
∫ x

0
· · · and by conti-

nuity at its lower limit: b(x, y) =
∑n

k=1

(
n
k

)
yn−k ·∫ x

0
tk−1dt = limε→0

ε>0

∫ x

ε
(t+y)n−yn

t dt. Now as-

sume x, y > 0. Let u(t) = 1 + t
y . Then

Fig. 4. Finding true S3 fails with 950 Cics for product
G: accuracy and kappa value over cutoff.
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Fig. 5. Finding true S3 fails with 950 Cics for product
G: number of satisfied conditions when deriving Cics
from sample chips only or from all chips.
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b(x, y) = limε→0
ε>0

∫ x

ε

(
y·u(t)

)n−yn

y·
(
u(t)−1

) · y · u′(t) dt

= limε→0
ε>0

∫ u(x)

u(ε)
(y·w)n−yn

y·(w−1) · y dw = limε→0
ε>0

yn ·∫ 1+ x
y

1+ ε
y

wn−1
w−1 dw. Note that u(t) − 1 �= 0 in the

denominator when t varies from ε to x > 0. Now

set x = p > 0 and y = 1 − p > 0. Then 1 +
x
y = 1

1−p . Thus, by swapping lim and finite sum,

b(p, 1− p) = limε→0
ε>0

(1− p)n · ∫ 1
1−p

1+ ε
1−p

wn−1
w−1 dw

= (1 − p)n · ∑n−1
k=0 limε→0

ε>0

∫ 1
1−p

1+ ε
1−p

wk dw =

(1 − p)n · ∑n−1
k=0 limε→0

ε>0

1
k+1 ·

[ (
1

1−p

)k+1

−(
1 + ε

1−p

)k+1 ]
. By continuity, b(p,1−p)

n =

(1−p)n

n

∑n
k=1

1
k ·

[ (
1

1−p

)k

− 1
]

= e2(n, p)

for p ∈ (0, 1). But E
[
X2

i

]
= b(p,1−p)

n for

n � 1, because E
[
X2

i

]
= 0 · Pr [xi = 0] +∑n

k=1
1
k2 Pr [xi = 1 ∧H(x) = k] =

∑n
k=1

1
k2 ·

p · (
n−1
k−1

)
pk−1(1 − p)(n−1)−(k−1) = 1

n ·∑n
k=1

(
n
k

)
1
kp

k(1 − p)n−k = b(p,1−p)
n . Case x =

0n is covered by the summand 0 · Pr [xi = 0].

Together, E
[
X2

i

]
= b(p,1−p)

n = e2(n, p).

Then Var [Xi] = E
[
X2

i

]− E [Xi]
2
= e2 − e21. A

similar calculation shows:

Lemma 4.1. E [XiXj ] =
e1 − e2
n− 1

(i �= j, n � 2)

and Cov [Xi, Xj ] =
e1 − e2
n− 1

− e21.

For y ∈ B
n∗ with H(y) = h, n � 2 and p ∈

(0, 1):

E [Zy] = E [X1 + · · ·+Xh] = h · e1 (1)

Var [Zy] = e1
h(h−1)
n−1 + e2

h(n−h)
n−1 − e21h

2 (2)

By abbreviating Eh = E [X1 + · · ·+Xh] and

Vh = Var [X1 + · · ·+Xh],
Var[Zy]
E[Zy]

can be ex-

pressed in an especially regular form as a convex

combination:
Var[Zy]
E[Zy]

= λ · Vn

En
+(1−λ) · V1

E1
with

λ = h−1
n−1 ∈ [0, 1].

4.1. The variant X∗
i of Xi

For fixed y ∈ B
n, define Z∗

y = 〈x,y〉
H(x) (or H(y)

n ) if

x ∈ B
n∗ (or x = 0n). Then several of the above

formulae become simpler:

Lemma 4.2.
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(i) E
[
Z∗
y

]
= H(y)

n and

(ii) Var
[
Z∗
y

]
= (e∗2 − e∗1

2) · H(y)(n−H(y))
n−1 ,

where e∗1 = e∗1(n, p) = 1
n and e∗2 = e∗2(n, p) =

1
n2 + 1

n ·∑n−1
k=1

(1−p)n−k−(1−p)n

k .

4.2. More on distributional properties
with fixed y

In this Section—as in Section 4.1—the distribu-

tion of 〈x,y〉
H(x) with fixed y ∈ B

n will be examined.

In terms of Algorithm 1,
〈x∗

i ,x
∗
k〉

H(x∗
i )

is computed for

some fixed training chip x∗
k ∈ B

n, while the chip

under test x∗
i ∈ B

n is varying.

Let hyp(k;n, h, �) =
(hk)(

n−h
�−k)

(n�)
be the probabil-

ity of k successes when drawing without replace-

ment � objects from a population of n objects, h

of which are of a special type (hypergeometric

distribution). If p = Pr [xi = 1] is the same for

all i, then for unrestricted H(x), Pr [〈x, y〉 = k] =

bin(k;H(y), p). If H(x) is fixed, then

Pr [〈x, y〉 = k ∧H(x) = �]

= Pr [〈x, y〉 = k | H(x) = �] Pr [H(x) = �]

= hyp(k;n,H(y), �) bin(�;n, p),
(3)

and by some short calculation,

hyp(k;n, h, �) bin(�;n, p)

= bin(k;h, p) bin(�− k;n− h, p).
(4)

Remark 4.1. Under suitable conditions on the

integers a, b, c, h, n and by setting Π = h
n , μ =

b · Π, σ2 = b · Π(1 − Π), hyp(ac;n, h, bc)

≈ 1√
c

1√
2πσ

(√
2πσ hyp(a;n, h, b)

)c
, and for

c|a ∧ c|b: hyp
(
a
c ;n, h,

b
c

) ≈
√
c√

2πσ

(√
2πσ

hyp(a;n, h, b)
) 1

c .

Proof. Let ϕ(x) = 1√
2π

e−
x2

2 . Approximating

the hypergeometric distribution twice by Gauss

gives hyp
(
a
c ;n, h,

b
c

)
≈ 1√

2π b
c Π(1−Π)

e
− ( a

c
− b

c
·Π)2

2· b
c
·Π(1−Π)

=
√
c

(
1√
2π σ

)1− 1
c
(
1

σ
ϕ

(
a− μ

σ

)) 1
c

≈ √
c

(
1√
2π σ

)1− 1
c

hyp(a;n, h, b)
1
c ,

which is the second claim. Substituting 1
c by c

proves the claim for hyp(ac;n, h, bc) for suitable

c ∈ N�1.

Theorem 4.2. Let y ∈ B
n be fixed and x ∈ B

n

random with p = Pr [xi = 1] for all i. Then for

a, b �= 0, Pr
[
〈x,y〉
H(x) =

a
b

]
= Pr

[
〈x,y〉
H(x) =

a′
b′

]
with

a′ = a
gcd(a,b) , b′ = b

gcd(a,b) , and this equals∑
 n
b′ �

c=1 hyp(a′c;n, h, b′c) · bin(b′c;n, p).

Proof.

From a, b �= 0,
(〈x, y〉, H(x)

) ∈ {1, . . . , n} ×
{1, . . . , n} and 〈x, y〉 � H(x) follows: 〈x,y〉

H(x) = a
b

iff
(〈x, y〉, H(x)

)
= (a′c, b′c) with some c ∈

{1, . . . , � n
b′ �}. Thus, Pr

[
〈x,y〉
H(x) =

a
b

]
=

∑
 n
b′ �

c=1

Pr [〈x, y〉 = a′c ∧H(x) = b′c]

=
∑
 n

b′ �
c=1 hyp(a′c;n,H(y), b′c) bin(b′c;n, p).

Remark 4.2. Giving the probabilities of 〈x, y〉 =
0 or H(x) = 0 for random x ∈ B

n takes a special

treatment.

Corollary 4.1. Let h = H(y). The follow-

ing approximation P to Pr
[
〈x,y〉
H(x) =

a
b

]
can

be derived under the assumptions of The-

orem 4.2: P = e
−np

2(1−p)

2π·p(1−p)
√

h(n−h)

∑
 n
b′ �

c=1

ec
2 −a′2n−b′2h+2a′b′h

2p(1−p)h(n−h)
+c

2b′hp(n−h)
2p(1−p)h(n−h) .

Proof. Let ϕ(x) = 1√
2π

· e− x2

2 . By Theorem 4.2

and Eq. (4),

P =


 n
b′ �∑

c=1

bin(a′c;h, p) · bin(b′c− a′c;n− h, p),

which can be approximated by:∑
 n
b′ �

c=1
1√

2πhp(1−p)
ϕ

(
a′c−hp√
hp(1−p)

)
·
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· 1√
2π(n−h)p(1−p)

ϕ

(
(b′−a′)c−(n−h)p√

(n−h)p(1−p)

)
. Expres-

sion P follows by elementary transformations.

Fig. 6 visualizes Pr
[
〈x,y〉
H(x) = q

]
with n = 50,

H(y) = 40 and p = 0.5, from left to right:

frequencies and cumulative of a stochastic sim-

ulation with 106 repetitions, the distribution by

Theorem 4.2 and the approximated distribution by

Corollary 4.1.

4.3. Feature-specific distributions

If Pr [xj = 1] is not the same for all j when ap-

plying the same thresholding to all features (as

always assumed above), then Algorithm 1 can still

be applied and Section 4 is still valid by intro-

ducing coordinate-specific thresholds t1, . . . , tn
for compensation. If Fj is the cumulative dis-

tribution function of the j-th measurement xj ,

thresholds tj are to be chosen such that ∀j :

Pr
[
θtj (xj) = 1

]
= p (iff Pr [|xj | > tj ] = p

iff Fj(−tj) + 1 − Fj(tj) = p). For example,

if Fj(x) = Φ(x) =
∫ x

−∞
1√
2π

e−
x2

2 dx—Gauss

N(0, 1)—, tj is to be chosen so that Φ(−tj)+1−
Φ(tj) = p, or tj = Φ−1

(
1− p

2

)
.

5. Conclusion

Algorithms 1, 2 and 3 have been implemented and

applied to measurement data of more than 100,000

chips of different products. Results tended to be

excellent when the overall defect state to be de-

tected is accompanied by measurement data—for

example, S2 overall defect state using S1 and S2

measurements. Properties which made the task

harder with below-excellent results include cases

where the soft bin to be predicted belongs to a

Fig. 6. Distribution of
〈x,y〉
H(x)

with n = 50, H(y) =

40, p = 0.5: simulation with cumulative, two-binomial
formula and summed Gauss approximations.
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measurement step not included in the data base—

for example, predicting S3 defect states using S1-

and S2-measurements only. In cases where Algo-

rithm 3 reached at least good classification quality,

dimensional reduction according to its ndiff rank-

ing may lead to considerable reduction of input

data demand.
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