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Automation in the oil and gas industries has increased over the years. Nonetheless, human input still plays a critical 
role in the operation of process plants, where automation does not completely replace humans but rather provides 
new ways for operators to interact with the system. Some ways of accessing human performance are through human 
reliability analysis and human factors studies. Both disciplines have been discussing human performance in 
automated systems and issues are pointed out in recent literature, particularly in the development and evaluation of 
Human Machine Interface (HMI) in different automation modes. In addition, a way of evaluating human 
performance is through experiments/simulations. Therefore, we propose an experimental set-up to observe human 
performance in automated systems through simulation in an operations control room. In this experimental setup, 
some errors are assessed through human factors. Also, we recommend an artificial intelligence model using webcam 
information to detect inattention to monitoring. 
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1. Introduction 
Automation in energy industry processes has 
increased over the years. It has not been different 
in the oil and gas (O&G) sector (Camponogara et 
al. 2010). Nonetheless, human input still plays a 
critical role in the operation of process plants. 
Automation does not completely replace humans 
but provides new ways for operators to interact 
with the system (Peng, Zhen, and Huang 2023; 
Ramos et al. 2022a). Hence, it is still critical to 
ensure adequate human performance during 
operation. Human error has contributed to 
significant accidents in the O&G sector, such as 
the Piper Alpha explosion in 1988, the Texas City 
refinery fire in 2005, and the Deepwater Horizon 
explosion in 2010 (Almeida and Vinnem 2020). 

With changes in the human role within a 
more automated process, new challenges may 
emerge (Maurer et al. 2016). Operators will play 
a more active role in monitoring, will share 
control with the system, and can serve as the final 
safety barrier if the autonomous system fails 
(Ramos and Mosleh 2021).  

The fields of human reliability analysis 
(HRA) and human factors (HF) have been 
discussing how more automated systems impact 
human performance and human error (Bye 2023; 
Theophilus et al. 2017; Tinga et al. 2023). In this 
context, authors have pointed the potential impact 
of boredom arising from long monitoring times, 
over-reliance or under-reliance on automation, 
lack of situation assessment, and low automation 
transparency (Boring et al. 2019; Park et al. 
2022). However, given the recency of highly 
automated systems in many industries, the 
quantitative impact of these and other factors on 
human performance is still unclear.  

Data collection on human error and human 
performance using simulators is a recent advance 
in the field of HRA. Examples include large-scale 
efforts in the Nuclear Industry, such as SACADA 
(Scenario Authoring, Characterization, And 
Debriefing Application) and HuREX (Human 
Reliability data EXtraction) (Chang et al. 2022), 
and studies using lower fidelity simulators, such 
as Microworld (Park et al. 2022).  
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Analyzing human performance through 
simulators allows researchers to study how 
individuals interact with complex systems in a 
controlled and repetitive setting (Ballingall, Sarvi, 
and Sweatman 2022). It is possible to examine 
human performance through low or high-fidelity 
simulations. Despite reproducing the systems 
with a high level of detail, the latter requires high 
configuration costs and numerous specialists to 
secure a full-scope facility, which demands 
intensive resources and time and limit the use to 
few organizations able to satisfy these conditions 
(Park et al. 2022). In contrast, simplified 
simulators present a greater opportunity for 
control, providing a flexible and adaptable tool, in 
addition to being a cost-effective way of 
exploring complex systems (Boring et al. 2019). 

Hence, this paper discusses the challenges 
related to automation and human performance 
and the potential solutions offered by simulator 
studies. We propose an experimental setup for 
analyzing human performance of control room 
operations of automated O&G operations. The 
setup includes a low-fidelity simulation of a 
refinery process considering factors such as task 
complexity, execution time/screen fatigue, and 
automation failures. Furthermore, we recommend 
an artificial intelligence model for detecting 
inattention in monitoring tasks through a non-
intrusive method.  

The remainder of the paper is organized as 
follows. Section 2 describes general information 
of human performance in automated systems, as 
well as use of simulators to evaluate of these 
performances. Section 3 describes the experiment 
and its features  the software used and the 
variables for measuring human errors. Section 4 
discusses the methodological aspects proposed 
for the experiment followed by conclusions in 
Section 5.  

2. Theoretical background  
 
2.1. Human performance in the automated 
environment 
Automating processes and tasks previously 
performed by humans has helped improve the 
efficiency and safety of many organizations, 
reducing human error in high-risk sectors such as 
the O&G industry (Camponogara et al. 2010). 
However, automation is imperfect, and many 

operators who have switched from active 
participants in the task to passive monitors may 
experience degraded performance (Rovira, 
McGarry, and Parasuraman 2007). Human 
performance in automated environments is 
influenced by several factors that must be 
considered to ensure the safety and effectiveness 
of these systems (Ballingall, Sarvi, and Sweatman 
2022). These factors include experience and 
training, understanding and trust in the system, 
and psychological factors (Bahner, Hüper, and 
Manzey 2008). 

Experience and training are linked to the 
minimum guarantee of skills that a user must have 
to interact with the system efficiently and safely. 
Training should include understanding the 
system, practicing operating procedures, and 
troubleshooting. Indeed, users need to understand 
how the system works and how to interact with it 
to effectively use its functionalities (Merriman et 
al. 2021), which is also linked to the 
understanding of the Human Machine Interface 
(HMI), and the operator's confidence in it (Tinga 
et al. 2023).  

Furthermore, internal factors such as 
attention, emotion, and stress can affect the 
effectiveness of human performance in automated 
environments. A highly discussed factor is 
automation complacency, when a user of an 
automated system becomes overly confident in 
the system (Ferraro and Mouloua 2021). Thus, 
these individuals do not monitor the systems 
sufficiently, which can lead to a loss of situation 
awareness and an increased risk of failing to 
detect and manage automation failures in time 
(Bahner, Hüper, and Manzey 2008). 
 
2.2. The use of simulators to evaluate human 
performance  
Measuring human errors in automated systems 
operations can be useful to identify areas for 
improvement, enhance usability, and ensure the 
safety of the system. In this case, several 
techniques can be; however, the use of simulators 
has been promising for safety-critical systems 
(Wen et al. 2022).  

The use of simulators is particularly 
interesting for recent autonomous systems and 
more automated ones, which do not have 
sufficient historical operational data yet. In 
addition, by providing a controlled and 
reproducible environment, simulations allow the 
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assessment of human performance in a variety of 
ways. For instance, simulation enable 
organization to conduct risk assessment and 
identify potential risks, subsequently taking steps 
to mitigate them. Simulations also aid in the 
assessment of decision-making in specific 
situations, allowing researchers to identify 
possible operator errors, as well as training these 
operators in various tasks and skills (Boring et al. 
2019; Chang et al. 2022) . 

Full-scope simulations ensure a high degree 
of fidelity when the system emulates as closely as 
possible a real environment. However, in the full-
scope simulator, it may be challenging to produce 
testing differences caused by design elements in 
the HMI, as changing a design that has already 
been configured and programmed into the 
simulator is relatively restrictive. The complexity 
of control system, also has conflicting 
implications on data collecting, possibly making 
it challenging to extract simple contextualization 
for human errors. The SACADA and HuREX 
studies had similar issues with this limitation 
(Park et al. 2022). Furthermore, shortcomings 
such as dependence on the simulation software; 
the use of many resources (experts and time) to 
prepare the installation, develop scenarios; and 
excessive complexity (requiring significant 
computational resources) may be considered 
(Shahsavari et al. 2021).  

Hence, the use of a simplified simulator 
offers a complementary approach (not a 
substitute) to full-scope simulations, with reduced 
HRA data collection entry points, mitigation of 
confusion due to simulator complexity, and a 
greater degree of freedom when designing 
experiments with reasonable cost and labor (Park 
et al. 2022). Simulations allow researchers to 
manipulate various factors and variables to 
understand how they impact human performance, 
using that knowledge to develop interventions 
and strategies to improve performance in real-
world contexts.  

3. Experimental Setup 
This section describes the proposed experiment 
on human performance of control room operators 
of automated O&G operations. The experiment 
aims to evaluate the impact of automation-related 
factors on operator performance based on a 
microworld simulation, with variables controlled 

and measured. The experiment in an O&G 
process aims to investigate whether operators can 
maintain a water level within the pre-established 
limits in order to have an acceptable vapor 
pressure level in the High Pressure (HP), Medium 
Pressure (MP) and Low Pressure (LP) steam 
collectors. Additionally, the experiment aims to 
collect information on automation complacency, 
human errors, and assess the level of 
attention/drowsiness among operators.  
 
3.1. Experiment description 
The experiment inspired by real refineries, 
simulates a hypothetical refinery steam system 
comprising two gas turbines with dedicated heat 
recovery steam generators (HRSG) and a three-
pressure steam distribution system. In addition, 
the system includes a steam generator boiler, a 
boiler drum supply and drain system, a burning 
system, and a heated gas output system. 

The fired boiler is part of a process in which 
a liquid is heated to vaporize it. Normally, water 
is the working fluid used in boilers is the 
separation on liquid water and steam occurs in the 
boiler drum. In this type of process, it is extremely 
important to control the water level in the boiler 
drum, which cannot be too high or too low. Thus, 
for our simulation, some simplified scenarios 
were proposed. 

� If the water level is low: the circulation of 
steam throughout the process may be affected 
and, therefore, the pipes may be affected; 

� If the water level is extremely low: the boiler 
can run dry, causing mechanical damage to 
the equipment and not taking steam to the 
parts needed in the rest of the process 
(causing major consequences); 

� If the water level is high, it can affect the 
steam's purity and result in more water 
droplets entering the superheater with the 
saturated steam. To vaporize these water 
droplets, more heat will be required, 
increasing the thermal load. Also implying 
the useful life of the tubes; 

� If the water level is extremely high, some 
amounts of liquid may be carried 
downstream and damage the equipment. 

Thus, the operator and/or the system must act to 
maintain standard operational control. Keeping 
the boiler drum level at 50% during operation is 
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normally standard. Thus, the actions taken are 
presented in Table 1 depending on the type of 
existing scenario. 
 

Table 1. Summary of scenarios, consequences and 
actions that should be taken. 

Scenarios  Consequences Actions 
Low 
water 
level 

tubes can be affected by 
a lack of optimal steam 
circulation; 

Open water 
injection 
valve 

Water 
level too 
low 

boiler running dry, 
causing mechanical 
damage to the 
equipment; 

Open water 
injection 
valve 

High 
water 
level 

steam purity is affected, 
increased heat load to 
vaporize water droplets, 
pipes affected; 

Open drain 
valve 

Water 
level too 
high 

Transported liquids 
causing mechanical 
damage to the 
equipment. 

Open drain 
valve 

 
3.2. Process Plant Simulation  
The plant is simulated using AVEVA, a dynamic 
simulation software (AVEVA 2020).  AVEVA 
focuses on dynamic simulation studies and 
emphasizes key modeling assumptions and 
expected results. Among the thirteen default 
processes available in the software, we 
specifically utilize the Steam Drum Three 
Element Control simulation for our study. 

A gas turbine generator/heat recovery steam 
generator (GTG/HRSG) is shown in Fig. 1. High-
pressure steam is produced in the HRSG and sent 

to the Refinery North End via the gas turbine 
exhaust, which has a temperature of 958ºF. A 
superheater, a boiler, an economizer, and a steam 
drum constitute the HRSG. The HRSG supports 
the supplemental firing of natural gas using the 
excess oxygen in the gas turbine exhaust. The 
steam drum level is maintained with a three-
element control system. 

3.3. Human-System Interface  
The system is considered a highly automated one 
that still needs to be monitored by an operator. 
The control and management of a system in a 
petrochemical industry can be performed with a 
graphical user interface known as a control panel 
or dashboard. Thus, we implemented through 
Wonderware InduSoft web studio 
software(AVEVA 2023) a control panel that 
schematizes the simulation Fig. 2. 

In this type of control mechanism, water is 
fed into the boiler drum through one or more pipes 
and, therefore through one or more control valves. 

Only the water level in the drum is measured 
using a level transmitter and the information is 
sent to the controller. The information is 
compared with the set point and then the control 
valves are manipulated to increase or decrease the 
flow of water inside the boiler drum. 
 
3.4. Control and measurement variables of the 
experiment  
The experiment aims at assessing the impact of 
certain factors related to an automated system on 
human performance. Firstly, human performance 
must be defined in the context of the task. In this 
task, an adequate performance is to open or close the 

Fig. 1. Dynamic simulation refinery steam from AVEVA 
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valves when needed by the plant (i.e., when the 
water level is too high or too low). Human Failure 
Events (HFEs) in this task are: (1) opening/closing 
the valve too early to too late, (2) manipulating the 
incorrect equipment, or (3) not performing the 
action. These HFEs are translated into measurable 
variables: reaction time and correct action (Table 2). 
Note that “no action” is included in reaction time, in 
which the time for reaction surpasses the available 
time the operator has. Secondly, the factors to be 
analyzed must be translated into control variables. 
These variables are Simulation time, task 
complexity, and failure in automation, further 
described in following sub-sections.  
 

Table 2. Experiment’s control and measurable 
variables  

Control variables 
Simulation time 
Task complexity 

Failures in automation 

Measurable variables Reaction time 
Correct action 

 
3.4.1. Monitoring time 
In automated operations, it is common for 
operators to go for extended periods without any 
actions required on their part, leading to a 
potential decrease in situational awareness. The 
lack of immediate stimuli or occurrences can 
cause complacency, making it challenging to be 
prepared to quickly recognize newly emerging 
problems. When monitoring automation, it 
frequently takes people a long time to notice that 
a situation calls for action, and even longer to 
fully comprehend it and respond appropriately 
(Endsley 2017). This gap between problem 

detection and action can result in critical delays 
and negatively impact the effectiveness of needed 
interventions. Therefore, it is essential to adopt 
strategies to mitigate the decrease in situational 
awareness.  
 
3.4.2. Task complexity 
In general, procedures lessen the likelihood that 
human operators would forget or skip an activity 
they need to do, reduce their physical and/or 
cognitive workload by providing explicit 
instructions, and maintain their performance over 
time. However, complicated procedures (i.e., 
incomplete, inaccurate, inconsistent, or difficult 
to understand) reduce human performance, 
suggesting that tasks' complexity has an impact on 
it (Jang, Kim, and Park 2021). 

The level of complexity also can negatively 
affect human performance in tasks that require a 
high level of concentration and attention. Hence, 
there are points of attention that the operator must 
focus on, however, there are several other boxes 
that bring information about the system but do not 
necessarily impact its action. For example, when 
the water level is rising (or decreasing), the 
operator can see the variation in the dashboard 
display (right side of the steam generator drum) 
and in the water level over time (left side of the 
steam generator drum) show in Fig. 2. The system 
is also proposed to alarm (box at the bottom left) 
if the level exceeds certain pre-established limits. 
However, other markers can draw attention. 
 
3.4.3. Automation complacency 

Automation complacency is a critical topic in 
automation safety. Complacency manifests in 

Steam 
generator 
drum

Alarm panel

Fig. 2. Preliminary dashboard proposed in InduSoft 
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inadequate monitoring and checking of automated 
functions, as exemplified by pilots who overly 
rely on their autopilot's proper functioning and 
consequently fail to monitor and check it 
appropriately (Bahner, Hüper, and Manzey 2008). 
According to Parasuraman and Manzey (2010), 
automation complacency is found for both naive and 
experts participants and cannot be overcome with 
simple training practice, and can affect decision-
making in individuals as well as in teams. 

In our example, the automation is designed to 
function correctly for a period, in order to build 
operators' confidence in the system, which may 
lead to complacency. However, we randomly 
induce an automation error over time, which can 
only be noticed when one of the events occurs and 
the alarm is not triggered. The event is 
implemented in the simulation itself, to induce a 
reduction in the water level, behaving like a leak. 

In our simulation, the automation error may 
will be interpreted by a communication error 
between the control panel and the simulation, 
where even with the water level exceeding the 
pre-established limits, the alarm is not activated. 
However, the variation in the dashboard display 
(right side of the steam generator drum) and in the 
water level over time (left side of the steam 
generator drum) shown in Fig. 2 will continue to 
report correctly. We can assess participants' 
reaction time and actions to determine their 
perception of water level changes without relying 
on the alarm and evaluate their accuracy. 
 
3.5. Assessment of human performance  
To evaluate the performance of the proposed 
experiment, various measurable variables need to 
be computed. The performance will be observed 
using a webcam to track the operator's actions, 
and the system also collects reaction time and the 
accuracy of their actions in a quantitative way. 
Additionally, more sophisticated methods can be 
employed to assess performance, such as 
automated detection of attention and drowsiness.  
 
3.5.1. Computational vision to assess human 
performance 
Fatigue, which can be influenced by both human 
and task-related factors, has been identified in the 
literature as a factor that decreases overall 
employee performance and can lead to 
drowsiness. Drowsiness is associated with 
various accidents and is of particular interest to 

organizations operating critical safety systems, 
including the O&G industry. In this context, it is 
possible to monitor an operator's level of 
drowsiness using computer vision information, 
such as images or videos. Advanced machine and 
deep learning techniques have been used to speed 
up the training process and improve model 
efficiency. In this context, we will assess the 
suitability of an approach that uses visual 
information in a deep learning model known as 
InceptionV3 for drowsiness detection (Ramos et 
al. 2022b). More details about the model will be 
described in another study. 
 
4. Discussion 
Simulators can be used to analyze human 
performance and errors in various automated 
industries (e.g., O&G, nuclear, aviation). One of 
the advantages of simulators is that they can 
simulate dynamic processes that may be difficult 
to analyze in the real world.  
The use of simulators for studying and collecting 
data on human performance requires several 
elements. The first element is the dynamic 
simulation of the plant. The second element is the 
human-system interface and the physical space, 
which should be as close to reality as possible. 
Low-fidelity simulators of control rooms can be 
as simple as adequate screens and control tools. 
Then, the desired human actions in the scenarios 
must be defined, along with the deriving human-
failure events. Human failures must be observable 
and measurable. For instance, “degraded 
performance” needs to be assessed through 
observable factors, such as long reaction time (in 
which “long” needs to be defined). This step can 
leverage Task Analysis such as the Concurrent 
Task Analysis (CoTA) to identify human tasks 
under the system dynamics and failures and 
develop the criteria for the operator’s success 
(Ramos et al. 2020). The fourth element is the 
influencing factors, i.e., the factors that may 
impact human performance in the scenario. It is 
essential to translate the factors into control 
variables that can be manipulated and measured. 
For example, “safety culture” cannot be evaluated 
directly, so a surrogate variable that is measurable 
and manipulable must be identified.  
Additional elements concern the post-experiment 
data collection and analysis. Post-experiment 
questionnaires are a valuable tool to assess factors 
not observed in the experiments, such as fatigue 



770 Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

or motivation. It is also necessary to determine the 
required number of experiments to obtain 
statistically significant results. Moreover, human 
performance generally depends on interdependent 
factors, as much as the experimental setup 
attempts to isolate the factors. Bayesian modeling 
can help modelling interdependent factors. 
Finally, it is important to define the population to 
be studied, including age, gender, and other 
relevant factors in order to avoid biased analyses.  

5. Conclusion 
Automation has become increasingly prevalent in 
the energy industry, including the O&G sector, but 
human input remains critical in process plant 
operation. Human error can contribute to significant 
accidents in the industry, and as the human role 
changes with more automation, new challenges may 
arise. Operators will have a more active role in 
monitoring and can serve as the final safety barrier 
if autonomous systems fail. The impact of 
automation on human performance and error is a 
topic of discussion in the fields of HRA and HF, but 
the quantitative impact of influencing factors on 
human performance is still unclear.  

This paper presented the experimental setup to 
observe and quantify the impact of certain factors 
associated with more automated operations in the 
context of O&G, through a low fidelity simulator. 
The experiments will be performed at the Center for 
Risk Analysis, Reliability Engineering and 
Environmental Modeling (CEERMA) at the Federal 
University of Pernambuco (UFPE), Brazil. The 
preliminary, simplified setup is expected to produce 
an initial assessment of the impact of those factors 
and requirements for more complex studies in the 
future.  
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