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Train brake system plays a vital role in train safety. In this paper, a hybrid model is proposed to evaluate the train 
brake system failure risk. The hybrid model, which combines fault trees with Bayesian networks, has a good 
logical structure and probabilistic reasoning ability. The fault tree model is used to identify the risk influencing 
factors in the brake system, while the failure dynamic nature is captured by the Dynamic Bayesian network. In 
particular, we evaluate the degradation of four common failures, insufficient braking, brake test failure, braking 
relieve failure and wheel lock. The risk influencing factors of the brake system and their relevance are also 
identified. A model based on fault tree and Dynamic Bayesian network for the train brake system is developed. 
The model can capture the spatial variability of parameters and simulates the evolution of brake faults in time and 
space. The information is used to perform sensitivity analysis and diagnostic inference on the model. 
 
Keywords: Dynamic risk assessment (DRA), Train brake system, Bayesian network (BN), Probabilistic Risk 
Assessment (PRA), Fault Tree (FT). 
 

1. Introduction 
As an important train operation safety barrier, 
train brake systems (TBS) are exposed to risks 
from the system inside. The risks will lead to 
TBS failure, and even cause serious accidents. 
For instance, on July 23, 2011, the train D3115 
from Hangzhou to Fuzhou South Station, had an 
electrical problem occurred causing the brake to 
fail to relieve. It was hit by another car, which 
cause huge injuries and enormous economic loss. 
Thus, it is warranted to assess brake system risks 
to identify the risk sequences and facilitate the 
risk management work. The risk assessment will 
help us to identify the vulnerable parts of the 

system  timely and implement protection 
proactively. 

The research on TBS failure based on the 
simulation model is concerned about 
components’ failure diagnosis. Sang et al.  
proposed a data-based detection strategy for train 
air braking systems, which was shown to 
enhance the detection robustness of a brake test 
platform. The brake disc simulation model 
showed the thermal fatigue crack expansion of 
brake discs in order to obtain the brake discs’ 
thermal fatigue life. Machine learning algorithms 
were used in the study of TBS to predict brake 
disc temperatures. These studies are useful for 
determining the component degradation state. 
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whereas they are unable to explain the 
relationship between component failures at the 
system level. Therefore, we need to conduct a 
TBS risk assessment to understand the 
relationship between the failure causes and 
provide knowledge for train maintenance. 

There are several commonly used risk 
assessment methods among which Bayesian 
Networks (BNs) are mostly used for failure 
maintenance. BNs have the advantage of 
rigorous probabilistic inference and have been 
used in train risk assessment, such as high-speed 
train wheel polygon risk assessment  and 
onboard high-speed train control systems. 
However, it is difficult to achieve the research 
objectives with a single method. To obtain a 
clear structure and rigorous inference, Meng et al.  
developed an emergency operation failure FT-
DBN model in the study of deep water blowout 
accidents. A hybrid model was developed by 
Jafari et al.  to improve the reliability of the fire 
alarm system. The above mentioned references 
illustrate that the hybrid model can perform 
effective probabilistic risk assessment work and 
provide guidance for the system overhaul. Using 
FT analysis, we can get the logical relationship 
from TBS failure performance to reason. While 
DBN can be applied to capture the component 
degradation process. 

A key issue in this thematic field is to express 
the repair strategy using DBN. Components such 
as pipes and brake discs suffer from the 
degradation process, which can affect the whole 
system performance. Therefore, a variety of 
maintenance strategies, including repairing 
maintenance and preventive maintenance, to 
ensure train operational safety is urgent to carry 
out. Cai et al.  evaluated subsea blowout 
preventer control systems through DBN and 
presented the effects of perfect and imperfect 
repair on multi-state nodes, and the study of 
preventive maintenance was made by changing 
the node state transition relationship. Therefore, 
we can resort to the state transfer relationship to 
develop different maintenance strategies. 

In this paper, we develop a FT-DBN hybrid 
model to conduct the dynamic risk assessment of 
the TBS. Compared to the existing studies, the 
original contributions lie in: 

a FT-DBN hybrid model for TBS is developed; 

classification of multi-state components into 
repairable or unrepairable components according 
to the repair strategy. 

The rest of paper is organized as follows. Section 
2 mainly introduces the modeling process and 
node state transfer rules. In Section 3, a case of 
TBS failure is analysed and a FT-DBN model is 
built accordingly. After that, a model studied for 
different repair conditions is conducted. Finally, 
work is concluded in Section 5. 

2. Methodology  
2.1.Scenario definition 
The braking system is designed to slow down or 
stop the train to ensure the safety. However, the 
failure of components or human error may cause 
the brake system to fail and lead to serious 
accidents. Therefore, it is necessary to perform a 
risk analysis of TBS. 

The train braking force is provided by air brake 
system and electric brake system. Train parking 
brakes and emergency braking and other actions 
rely on the air brake. Thus this paper mainly 
analyses the air brake system. Insufficient brake, 
brake test failed, brake relieve failure, and wheel 
locking are common failures, which will cause a 
long braking distance or the train cannot start 
normally. Based on the common brake failures, 
we use FT-DBN for risk assessment. 

2.2.Fault tree 
For any upper-level fault event, there may be 
two or more lower-level events that are the cause 
of its occurrence, i.e., there are multiple input 
events corresponding to each output event. The 
logical relationships between output events and 
input events are logical with, logical or and 
logical not. Building a brake system FT model 
can help us understand the causes of system 
failure and the logical relationship between 
events. Moreover, the structure of the DBN 
modeling built according to the FT will be 
logical. 
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2.3.Dynamic Bayesian network 
2.3.1.Basic Definition 
BNs calculate posterior probabilities based on 
evidence as well as prior probabilities the 
updating equation can be written as: 

 ( / ) ( )( / )
( )

P X a P aP a X
P X

�
�  (1) 

where ( )P a  is the prior probabilities, and

( / )P X a  is the conditional probability of X

given a . ( )P a is the probability of observation 

or evidence, and ( / )P a X is the conditional 
probability of a  given X . 

According to the chain rule, the joint probability 
distribution (JPD) of the network can be 
obtained by: 

 1 2
1

( , ,..., ) ( / ( ))
n

n i i
i

P X X X P X Pa X
�

��  (2) 

where ( )iPa X is the parent set of any node iX , 
and n is the number of nodes in the network. 

Based on BN, DBN adds the concept of the time 
slice, which gives BN dynamic characteristics. 
The transition relationship between time slices 
can be expressed as: 

 1 , ,
1

( / ) ( / ( ))
n

t t i t i t
i

P Z Z P Z Pa Z�
�

��  (3) 

where ,i tZ is i th node at time t , and ,( )i tPa Z is 

the parent nodes of ,i tZ from the same nodes in 

the time 1t � . 

2.3.2.Determination of Transition Probability 
Table 
In the real world, the time-dependent 
components degrade during its lifetime and the 
degradation process follows a discrete state 
discrete time Markov model with a finite state 
space. The key step to studying multi-state 
components reliability is to determine their 

degradation and repair relationships. In this 
paper, repairing maintenance imperfections will 
be considered. Imperfect repairs can return 
components to a normal or degraded state, while 
perfect repairs return parts to a normal state. The 
difference between a perfect repair and an 
imperfect repair can be considered in the 
modelling.  

According to the characteristics, the components 
in the system can be classified as common 
component and multi-state component. Common 
component does not have a degraded state and 
usually have a constant probability of failure, so 
they are replaced after failure. 

For multi-state component that follows a Markov 
model with a finite state space, as shown in Fig. 
1. Here, we assume that the component is 
usually in a normal state after first replacement. 
And the component state transition rate in the 
study is constant. After working for some time, 
the components will transfer to a degraded state 
1. In this case, the components can still work 
normally, but their failure probability will 
change. However, when components are in a 
degraded state 2, it will affect the system’s 
normal operation. Therefore, we can improve the 
condition of the components through 
maintenance. Some multi-state components that 
called repairable components, such as brake pipe 
systems whose degraded state can be repaired. 
However, for repair work on some consumable 
components, such as brake discs, the 
replacement strategy is usually adopted. It is also 
assumed that the failure occurs randomly and the 
overhaul does not take time. 

λ

λ λ

Fig. 1. Multi-state component status conversion. 
 2 3� ��  (4) 
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We can obtain the repairable components’ 
relations from moment t  to t t�	 . To study the 
performances of different repair actions, we 
enumerate the state transition probability table 
(TPT) for various repair conditions as follows. 

Table 1. Multi-state components without repair. 

Node state at 
time t  

Node state at time t t�	  
Normal DS1 

Normal 1 2 4( ) te � � �� � � 	  
1 2 4( )

4

1 2 4

(1 )
( )

te � � ��
� � �

� � � 	�
� �

 

DS1 0 3 5( ) te � �� � 	  

DS2 0 0 

Failed 0 0 

Node state at 
time t  

Node state at time t t�	  
DS2 Failed 
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1 2 4( )

2

1 2 4

(1 )
( )

te � � ��
� � �

� � � 	�
� �

 
1 2 4( )

1

1 2 4

(1 )
( )

te � � ��
� � �

� � � 	�
� �
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3 5
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( )

te � ��

� �
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 �3 5( )
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3 5

1
( )
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� �

� � 	�

�
 

DS2 6 te �� 	  61 te �� 	�  

Failed 0 1 

Table 2. Multi-state components with perfect 
repair. 

Node state at 
time t  

Node state at time t t�	  
Normal DS1 

Normal 1 2 4( ) te � � �� � � 	  
1 2 4( )

4

1 2 4

(1 )
( )

te � � ��
� � �

� � � 	�
� �

 

DS1 0 3 5( ) te � �� � 	  

DS2 0 0 

Failed 1 2 3( )1 te � � �� � � 	�  0 

Node state at 
time t  

Node state at time t t�	  
DS2 Failed 

Normal 
1 2 4( )

2

1 2 4

(1 )
( )

te � � ��
� � �

� � � 	�
� �

 
1 2 4( )

1

1 2 4

(1 )
( )

te � � ��
� � �
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te � ��
� �

� � 	�
�

 
3 5( )

3

3 5

(1 )
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�

 

DS2 6 te �� 	  61 te �� 	�  

Failed 0 1 2 3( ) te � � �� � � 	  

Table 3. Multi-state components with imperfect 
repair. 

Node state at 
time t  

Node state at time t t�	  
Normal DS1 

Normal 1 2 4( ) te � � �� � � 	  
1 2 4( )

4

1 2 4

(1 )
( )

te � � ��
� � �
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1
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2
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� � �
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1 2 4( )

2

1 2 4

(1 )
( )

te � � ��
� � �

� � � 	�
� �
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1
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5
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3
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� �
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�
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Failed 

1 2 3( )
3

1 2 3

(1 )
( )

te � � ��
� � �

� � � 	�
� �

 

1 2 3( ) te � � �� � � 	  
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2.3.3.Mapping Algorithm 
In this paper, a hybrid model for TBS risk 
assessment is developed, in which DBN can 
handle uncertainty information using 
probabilistic data. FT is applied to optimize the 
logical structure between nodes. To build a 
hybrid model, we map the brake system FT 
model into a DBN, as shown in Fig 2. Each 
event in the FT is transformed into a node in a 
DBN. In FT model, the upper-level fault event is 
the result of the lower-level fault event, and the 
lower-level event is the cause of the upper-level 
fault event. While in DBN, the parent node 
represents the cause and the children represent 
the result, which is usually represented by a 
directed arc. However, the logical relationships 
between events are represented by logic gates, 
which are usually represented by conditional 
probability tables in DBN. The conditional 
probability table is information that represents 
the values of the parent node probability domain 
associated with the child node. In a FT model, 
logic gates link events and represent the logical 
cause-and-effect relationships between events. 
So when mapping, the logical gates in the FT 
will be transformed into a conditional probability 
table in a DBN. The values in the conditional 
probability table are determined by the logic 
gates in the FT. 

 

Fig. 2. FT-DBN mapping algorithm. 

3. Application 
In this section, we develop a FT-DBN model 
with a real date to evaluate brake system failure 
risk. In section 3.1, we analyze the brake system 
failure. Then, in Sect 3.2, a FT model is built and 
mapped to a DBN mode. At last, the conditional 

probability table (CPT) and node state TPT are 
calculated separately. 

3.1.Case Study 
Before building the FT model, we need to 
analyse the research scope and basic triggering 
factors of train brake failure. For assessing the 
brake failure risk, we select four common 
failures of TBS: insufficient brake, brake test 
failed, brake relieve failure, and wheel locking as 
the failure causes. Insufficient brake can 
seriously affect braking system function, which 
can lower the system control capability. The 
brake control unit is a general term for a brake 
computer and different types of air control 
valves integrate together. The failure of the 
components that make up the brake control unit 
will result in the brake command not being 
properly transmitted to the base brake unit. 
Insufficient braking may also be caused by the 
inability to obtain sufficient force, which is 
usually the result of a malfunctioning cylinder, 
brake transmission, brake disc, etc. 

According to the regulations, before the train 
departs or during the maintenance process, the 
TBS needs to be tested and this test will 
determine whether the train departs. The braking 
command cannot be transmitted properly 
resulting in the loss of braking efficiency, which 
is one of the reasons for the brake test failed. The 
tests usually require complex operations by 
workers, so human factors are also a cause of 
this failure. 

3.2.Prior probability 
In this paper, the node prior probability is 
calculated from the failure rate of the basic event 
of the node found in the literature. And the repair 
rate is used as the inverse of the mean time to 
repair (MTTR). The failure rate of some 
electronic components is calculated according to 
the relevant standards. The failure distribution is 
exponential and the cumulative failure 
probability function as: 
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 ( ) 1 tF t e ��� �  (12) 

where the � is the failure rate of a basic event. 

Brake relieve failure and wheel locking are 
failures that occur during train braking, usually 

due to the failure of control components. After 
analysis, it is possible to obtain 24 basic events 
that lead to train brake failure. The basic event 
symbols and data obtained by reviewing 
information and industry standards are shown in 
Table 4.

Table 4. Basic event symbols. 

Symbol 
Basic event data 

Symbol 
Basic event data 

Risk factors Failure 
rate 

Repair 
rate Risk factors Failure 

rate 
Repair 

rate 

X1 
Loose optical 
fiber 
connector 

3.98E-08 - X13 Brake disc 
failure 1.53E-04 3 

X2 
Modules of 
Terminal 
device failure 

1.49E-08 - X14 
MVB 
communication 
interruption 

3.98E-08 - 

X3 Brake cylinder 
failure 6.39E-06 0.833333 X15 BCU Failure 2 4.04E-05 1.960784 

X4 Main duct 
leakage 5.07E-07 0.19685 X16 Man-made 

causes - - 

X5 Solenoid 
valve failure 6.39E-06 0.833333 X17 Brake cylinder 

failure2 6.39E-06 0.833333 

X6 
Generator 
signal feeder 
disconnection 

3.98E-08 - X18 BCU Failure 3 4.04E-05 1.960784 

X7 Generator 
failure 5.20E-06 0.444444 X19 Relay valve 

failure 8.56E-05 0.641026 

X8 UBTRTD 
relay failure 1.49E-06 - X20 EP valve 

failure2 2.60E-06 0.408163 

X9 Brake pipe 
leakage 3.99E-06 2.380952 X21 Pressure sensor 

failure 1.71E-04 0.826446 

X10 EP valve 
failure 1 2.60E-06 0.408163 X22 Speed sensor 

disconnection 1.07E-04 0.398406 

X11 Detecting 
sensor failure 1.07E-04 0.398406 X23 PCIS anti-slip 

valve failure 4.28E-05 0.819672 

X12 BCU Failure 1 4.04E-05 1.960784 X24 BCU internal 
glide 4.04E-05 1.960784 

 

3.3.Model Formulations 
Based on the brake system failure causes, a FT 
model is obtained, as shown in Fig. 3. The FT 
model contains 24 basic events, 11 intermediate 
events, 12 OR gates, and an AND gate. Then, we 
map the node structure of the FT model to the 
DBN. The mapped BN can perform probabilistic 

inference and has a logical structure. Firstly, we 
transform the basic event in the FT model into 
the node in the DBN. And there are 37 nodes in 
the TBS-DBN. Then some directed arcs are used 
to connect the nodes. For nodes with temporal 
characteristics, we need to add time arcs to them, 
which can be used to build a transfer relationship 
between different time slices of this node, as 
shown in Fig. 4. 
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Brake system 
failure

Insufficient 
braking

Brake test 
failed

Braking 
relieve 
failure

Brake control 
failure

Insufficient 
brake force

Brake control 
unit poor 

transmission

Brake control 
unit 

generator 
disconnection

Braking 
efficiency 

lost

Control 
Failure

Wheel 
locking

Brake control 
device failure

Exhaust 
failure

Fig. 3. TBS failure FT model. 

 

Fig. 4. TBS failure DBN model. 
 

 

3.4.Bayesian Network CPT 
In the DBN, CPTs are used to replace logic gates 
in FT model. For example, brake control unit 
poor transmission is usually caused by X1 (loose 
optical fiber connector) or X2 (Modules of 
Terminal device failure). Thus, the logical 
relationship between X1 and X2 is an OR gate. 
Only when X1 and X2 nodes (parent node) are 
normal, the ‘Brake control unit poor 

transmission’ node (child node) is normal. 
According to logical relationships between 
events, we obtain ‘Brake control unit poor 
transmission’ node CPT as shown in Table 5. 

Table 5. Brake control unit poor transmission 
CPT. 

Parent 
X1 Normal Failure 
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node X2 Normal Failure Normal Failure 

Child 
node 

Normal 1 0 0 0 

Failure 0 1 1 1 

 

3.5.Node State TPT 
By studying the components’ maintenance 
strategies, we can get three multi-state nodes: X4, 
X9, and X13. And the node state TPT 
distinguishes their different repair conditions. 
Nodes X4 and X9 are repairable parts, which 
state transition relationships for no repair, perfect 
repair, and imperfect repair can be determined in 
Table 1, Table 2 and Table 3. 

4. Results and Discussion 
The state transfer tables of different nodes with 
different repair conditions are fed into the DBN 
model to obtain the results for different repair 
conditions. In this section, we present the results of 
the repair effectiveness study and the sensitivity of 
the key node study. 
We assume that the failure occurs at the 30th time 
step and compare the poste probabilities for the 
three repair conditions as shown in Fig. 5. The 
results illustrate the key nodes under different 
repair conditions. X11 (Detecting sensor failure), 
X13 (Brake disc failure), X16 (Man-made causes), 
X21 (Pressure sensor failure), and X22 (Speed 
sensor disconnection) can be regarded as the key 
factors affecting the failure of the TBS. Whichever 
repair condition, X13 (Brake disc failure) has the 
greatest impact on brake system failure rate among 
these nodes and therefore has the highest 
association with brake system failure. 
 

X1 X3 X5 X7 X9 X11 X13 X15 X17 X19 X21 X23
0.0

0.2

0.4

0.6

0.8

Fa
ilu

re
 p

ro
b

Basic event

 Without repair
 Perfect repair
 Imperfect repair

 Fig. 5. Multi-state component status conversion. 
 

5. Conclusions 

In this paper, a hybrid model has been proposed to 
evaluate the brake system failure risk. a FT-DBN 
model is established from the failure symptoms 
and the causes. The multi-state components is 
considered in the proposed DBN model according 
to the component repair strategy, and initially 
considers the risk of human factors. In addition, a 
case of a TBS is used to demonstrate the proposed 
method. The results show that: 

 X11, X13, X16, X21, and X22 are the 
key nodes of the system. 

 Node X13 associated with multi-state 
components has the greatest impact on brake 
system failures. 
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