
Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

Edited byMário P. Brito, Terje Aven, Piero Baraldi, Marko Čepin and Enrico Zio
©2023 ESREL2023 Organizers. Published by Research Publishing, Singapore.
doi: 10.3850/978-981-18-8071-1_P248-cd

Selecting combinations of reinforcement actions to improve the reliability of distribu-
tion grids in the face of external hazards

Joaquı́n de la Barra
Department of Mathematics and Systems Analysis, Aalto University, Finland.
E-mail: joaquin.delabarra@aalto.fi

Ahti Salo
Department of Mathematics and Systems Analysis, Aalto University, Finland.
E-mail: ahti.salo@aalto.fi

Decisions concerning reinforcing distribution grids are complicated by the interaction of multiple hazards and
reinforcement actions. This creates a need for a systemic approach to assessing how the system’s reliability depends
on these interactions.
In this paper, we develop a systemic framework to support a distribution system operator to reinforce and protect
multiple distribution grids. We address the problem of choosing between alternative combinations of reinforcement
actions under budget constraints, minimum reliability standards, and different hazards. In the framework, this
problem is structured as an influence diagram containing scenarios representing different combinations of hazards.
The optimization problem is solved using techniques of Portfolio Decision Analysis (PDA) from a mixed integer
linear problem which incorporates risk measures such as conditional value at risk (CVaR) to maximize reliability.
We showcase the framework with an illustrative study case in which the operator considers several reinforcement
actions to mitigate the risks posed by different hazards in two distribution grids.
The proposed approach is novel in combining the strengths of the PDA with existing reliability models and expert
judgments to account for interactions between hazards and reinforcement actions. In particular, it exploits synergies
to propose cost-efficient combinations of reinforcement actions.
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1. Introduction

The electrification of industrial processes, recon-
version of heating systems, and the integration of
electromobility have made electricity one of the
primary energy sources in most countries. While
society expects a fully reliable system, this is
impossible due to the inherent failure rates of tech-
nical components and the possibility of excessive
loads due to harsh external conditions. As shown
by de la Barra et al. (2021) and Wirtz (2007), the
extent to which high-reliability levels are guaran-
teed directly impacts the system’s total cost.
Power interruptions can occur due to failures

in generation, transmission, and distribution sys-
tems, Billinton and Allan (1984). Interruptions af-
fecting end consumers are primarily due to prob-
lems at the distribution level, Ji et al. (2016). This
has motivated the development of approaches to
reinforce distribution grids so that safety and re-

liability requirements can be met while keeping
the costs as low as possible. The grids’ reliability
is quantified through global or local reliability in-
dexes. Total costs consist of energy losses, acqui-
sition of new components, and penalties for violat-
ing reliability requirements, among others. Single-
objective approaches minimise cost, subject to re-
liability requirements or maximise reliability sub-
ject to budget constraints. Shang et al. (2021) and
Zhang et al. (2015) propose multi-objective meth-
ods to minimise cost and losses while maximising
reliability. One of the main challenges is that the
problem is not deterministic due to uncertainty
associated with potential hazards, fault events, and
growth in electricity demand and generation ca-
pacity, Lei et al. (2005).
It is crucial to identify relevant hazards and to

quantify their impacts when designing and imple-
menting reinforcement actions to mitigate them.
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Mahmoud et al. (2021) categorize hazards accord-
ing to their magnitude, duration, and likelihood,
among others. It can be challenging to quantify
risks due to the large number of hazard and the
complexity of their interactions with the systems,
Doguc and Emmanuel Ramirez-Marquez (2012).
Many well-established models have been de-

veloped to estimate the reliability performance
of the grids in the face of different hazards.
For instance, Ji et al. (2016) show that extreme
weather exacerbates the existing vulnerabilities of
the distribution grids. Atrigna et al. (2021) study
the effect of heatwaves on power distribution grid
failures and propose a fault prediction system.
Dvorkin and Garg (2017) study the reliability im-
pact when several controlled loads of a distribu-
tion grid are hacked. Ding et al. (2022) provides
a broad review of cyber threats. Bagheri et al.
(2015); Fan et al. (2016); Pan et al. (2019) explore
the effect of demand uncertainty and renewable
generation on the distribution grid’s reliability.
Elicitation of expert judgments can help iden-

tify potential risks and their impact on critical
infrastructures. Such judgements are beneficial
when there is a lack of data or when the grids must
be prepared against hazards such as intentional
attacks that have not occurred in the past. For in-
stance, Interior (2019) contains a wealth of expert
judgments on Finland’s national risk assessment.
Taken together, computational models and elicita-
tions provide complementary sources of relevant
information in support of reinforcement decisions.
Once the risks caused by hazards have been

characterized, reinforcement actions need to be
selected and implemented to prepare distribution
grids against them. Depending on their design and
characteristics, reinforcement actions can be local,
affecting just a portion of the grid, or systemic,
in which case they benefit a more significant part
of the grid or even different grids. Amjady et al.
(2018); Muñoz-Delgado et al. (2018) propose
capital-intensive solutions to replace and upgrade
infrastructure equipment. Ahmadi et al. (2019);
Azizivahed et al. (2020) present operational ap-
proaches such as the reconfiguration of the grid.
de la Barra et al. (2021); Franco et al. (2016) pro-
pose less intensive capital solutions by installing

protective devices, which has become a timely
topic with the integration of distributed genera-
tion, and the availability of more sophisticated
communication systems, Osman et al. (2015). De-
tailed surveys on alternatives to improve the re-
liability of the grids, the algorithms developed,
and the objective of the studies can be found in
Ganguly et al. (2013); Kennedy et al. (2016).
Although each grid can be reinforced individu-

ally with the above procedures, there are benefits
in reinforcing multiple grids simultaneously to se-
lect a portfolio (combination) of several reinforce-
ment actions using approaches of Portfolio Deci-
sion Analysis (PDA), Salo et al. (2011). Selecting
reinforcement actions by looking at one hazard at
a time will not reveal how combinations of multi-
ple reinforcement actions contribute to mitigating
risks posed by several hazards. To achieve this,
there is a need for a systemic approach that com-
bines reliability models with expert judgements
and provides a comprehensive framework within
which the effectiveness of different portfolios of
reinforcement actions can be assessed.
The selection of reinforcement actions for mul-

tiple distribution grids can be framed as an opti-
mization problem under uncertainty in which the
interactions between hazards, distribution grids,
and reinforcement actions are capture. This sys-
temic approach to the problem can be represented
using influence diagrams which are solved using
mixed-integer linear programming.The results are
useful in guiding decision-makers in the selection
of cost-effective portfolios of reinforcement ac-
tions that contribute optimally to the attainment of
reliability objectives subject to budget constraints.
In this paper, we develop a framework to sup-

port the selection of reinforcement actions on dis-
tribution grids by structuring this problem as an
influence diagram which is solved with Decision
Programming, Salo et al. (2022). The framework
accounts for the costs of reinforcement actions
and their impacts on the grid’s reliability. These
impacts are assessed through conditional proba-
bilities for different combinations of hazards and
reinforcement actions. The framework identifies
those portfolios of non-dominated reinforcement
actions that are non-dominated in that they im-
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prove the system’s reliability most at a given level
of total costs. It is illustrated with a case study
in which two adjacent distribution grids need to
consider several alternative combinations of rein-
forcement actions to mitigate the risks posed by
three kinds of external hazards.
This paper is structured as follows. Section 2

presents the framework and discusses relation-
ships between reliability models and expert judge-
ment elicitations. Section 3 specifies the structure
of the reinforcement problem, presents the influ-
ence diagram, and the corresponding optimization
model. Section 4 presents a study case in which
two adjacent distribution grids are to be rein-
forced. Finally, Section 5 concludes by providing
future guidelines.

2. Methodology

In our framework, the information provided by
multiple reliability models and expert judgments
is integrated to support the quantitative cost-
effectiveness assessment of reinforcement actions
for distribution grids. This integration captures
how interdependencies between different combi-
nations of hazards and reinforcement actions im-
pact the grids’ reliability. The Distribution System
Operator (DSO) can exploit the results of this as-
sessment to select combinations of cost-effective
reinforcement actions that ensure the required re-
liability of the grids in the face of external hazards.
In the workflow in Figure 1, the risks caused by

external hazards are first identified based on his-
torical data, the use of statistical models, and the
elicitation of expert judgments. The characteriza-
tion of hazards is synthesized by formulating sce-
narios that represent combinations of realizations
for these hazards. Probabilities are associated with
the scenarios by drawing on all relevant sources of
information.
Reliability models are employed to estimate the

system’s reliability and the impact that hazards
and reinforcement actions have on it. These mod-
els can be either component-wise or systemic.
The first of these consider the reliability of spe-
cific grid components, such as distribution trans-
formers Lingfeng et al. (2022), or main feeders.
They tend to be accurate regarding the physical

representation of the electrical components whose
reliability is quantified through failure rates and
repair times. Systemic models consider these pa-
rameters to assess the reliability of the entire grid
de la Barra et al. (2021). A systemic model can in-
tegrate the information of several component-wise
models in order to provide a better representation
of the system.
Expert judgements can be elicited to comple-

ment component and system reliability models.
They are particularly useful in quantifying events
with no history, such as cyber-attacks or extreme
weather events due to global warming. Further-
more, they can be employed even when there is
no data for reliability models due to lack of mea-
surement systems, for instance.
The parameters of the influence diagram in-

clude probabilities of the hazard scenarios and the
conditional probabilities, which are employed to
measure the grid’s reliability for different combi-
nations of hazards and reinforcement actions. The
influence diagram is converted into an optimiza-
tion model to maximize the aggregate reliability
of the grids for different budget levels. Specifi-
cally, the optimum gives the most reliable com-
bination of reinforcement actions for the chosen
budget level.

3. Methodological Approach

3.1. Influence Diagram

The influence diagram in Figure 2 represents the
problem of reinforcing grids A and B. It is a
directed acyclic graph illustrating the probabilistic
dependencies between events and decisions. The
diagram contains three types of nodes: chance
nodes C (circles) indicate random events, such
as potential hazards or reliability performance;
decision nodes D (squares) indicate possible re-
inforcement actions; and value node V (diamond)
quantifies preferences for the consequences that
are associated with different reliability levels. The
set of all nodes isN = C ∪D∪ V . Dependencies
between nodes states are represented by directed
arcs A ⊆ {(i, j) | i, j ∈ N, i �= j}, an arc (i, j)
indicates that the state at node j is conditionally
dependent on the state at node i. For details on
influence diagrams, see Salo et al. (2022).



3323Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

Fig. 1. Framework for selecting portfolios of reinforcement actions to improve the reliability of distribution grids.

In our context, the chance node HL represents
the chance event that depicts the realization of
different hazards. Chance nodes GA and GB rep-
resent the reliability state of grids A and B, re-
spectively. Local reinforcement actions are taken
at decision nodes DA and DB , while the global
reinforcement actions are chosen at decision node
DG. At value node V , there is a utility function
defined on the reliability of the distribution grids.
Arcs represent the impact that the reinforcement
actions and the possible realization of hazards,
taken together, have on the grids’ reliability.

HL

DA

DG

DB

GA

GB

V

Fig. 2. Influence diagram for assessing reinforcement
actions in the presence of external hazards.

3.2. Optimization model

Selecting reinforcement actions for distribution
grids involves multiple objectives, most notably
minimising the reinforcement costs or maximising
reliability. We account for both objectives by for-
mulating the problem to maximise reliability sub-
ject to constraints representing different budget
levels. Budget levels indicate how much money is
available to implement reinforcement actions.
When reinforcing multiple grids simultane-

ously, there may be a need to prioritise some,
especially those that supply critical infrastruc-
tures such as hospitals, military facilities, or trans-
portation systems. In our formulation, the reliabil-
ity of each grid can be represented by a single
utility function. By multi-attribute utility theory
(MAUT), these grid-specific utility functions Ug

of multiple grids g ∈ G can be combined to
an aggregate utility function U =

∑
g∈G wgUg

where the weights wi represent preferences. We
use the Decision Programming approach proposed
by Salo et al. (2022) to maximise the single utility
function subject to the budget constraints.

4. Case study

We showcase the framework with an illustrative
case in which the DSO selects between several
reinforcement actions to mitigate the risks arising
from adverse weather conditions, potential cyber-
attacks, and grid overloading that may affect two
distribution grids. The aim is to maximise the
reliability of the grids for different budget levels.
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4.1. Hazards

We consider simultaneously three hazards: ex-
treme weather, cyber-attacks, and overloading.
Each of these has two possible states, represent-
ing normal and adverse conditions. We construct
eight possible scenarios to capture all possible
combinations of hazard states. Scenarios are enu-
merated so that those with a higher index lead to
a more significant reduction of reliability unless
reinforcement actions are taken.
The scenarios and their probabilities are in Ta-

ble 1. Hazards are taken to be independent. This is
not a restrictive assumption because these prob-
abilities are input parameters. Thus, one could
readily admit correlated hazards (e.g., weather
conditions and grid overload could be correlated).

Table 1. Scenario probabilities.

Scenario WS CA OL P

S1 � � � 0.432
S2 � � × 0.108
S3 � × � 0.288
S4 � × × 0.072
S5 × � � 0.048
S6 × � × 0.012
S7 × × � 0.032
S8 × × × 0.008

Notation: WS: weather state, CA: cyber-attacks, OL: over-
loading, �: normal conditions, and ×: adverse conditions.

4.2. Reinforcement actions

Reinforcement actions are in Table 2. The scope
of the action refers to the ability to reinforce either
one of the grids only (local) or both grids (global).
Decisions about local actions are taken at decision
nodes DA and DB , while global decisions are
taken at the decision node DG. The cost repre-
sents the annualized investment expenditure plus
the annual maintenance and operation costs. The
impacts of reinforcement actions on reliability de-
pend on the hazards contained in the scenarios.
For instance, line under-grounding improves the
system’s reliability, especially during bad weather
conditions, compared to scenarios with normal
weather conditions.

Table 2. Reinforcement actions.

Action Scope Cost (USD) ηa ra

BG Local 7500 0.6 0.8
CS Local 7500 0.6 0.8
UL Local 7500 0.6 0.8
ST Global 5000 0.3 0.4
MC Global 5000 0.3 0.4
BAU - 0 0 0

Notation: BG: Backup generator, CS: Communication sys-
tem, UL: Underground line, ST: Spare transformer, MC:
Maintenance crew, BAU: Business as usual.

4.3. Reliability of the grids

Traditionally, the reliability of the power grids
is quantified by reliability indexes. For instance,
the System Average Interruption Duration Index
(SAIDI) quantifies the duration of fault events,
while System Average Interruption Frequency In-
dex (SAIFI) quantifies their frequency.
We consider three reliability states R1, R2, and

R3, which are synthesized from such reliability
indexes so that, for instance, each state can rep-
resent a range of SAIDI and SAIFI values. In our
setup, R1 is the most reliable state, and R3 is the
least reliable. The grid’s reliability i is Ri with
probability pRi

, which depends on the scenario
and the reinforcement actions.
Furthermore, each reinforcement action a has

an effectiveness factor ηa and a distribution ratio
ra, in Table 2. The first quantifies how much
the probability of state R3 is reduced, while the
second quantifies how this reduction is distributed
to increment the probabilities of the other two
states. The interaction between the scenario s and
the global action g is accounted for by scaling
the effectiveness factor ηsg by a factor θsg . The
effectiveness factor for local action l depends on
the global action g and scenario s; thus, it is scaled
by θsgl. Factors θsg and θsgl are in Tables 4 and 3.
The probabilities of the reliability states after the
reinforcement action p∗Ri

are given by (1) - (3),
these equations are applied twice, first to account
for the local actions and then for the global ones.
These factors give a simple representation of the
impact on reliability, and they can be obtained ei-
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ther by running computational models or eliciting
expert judgements. Here, we assigned the same
factor to every local and global action.

p∗R1
= pR1

+ raηapR3
(1)

p∗R2
= pR2

+ (1− ra)ηapR3
(2)

p∗R3
= pR3

− ηapR3
(3)

4.4. Utility functions

Because the grids need not be equally important,
we introduce two utility functions, UA, and UB ,
that account for the reliability of the respective
grids A and B. For each grid, the function is
normalized so that it has a value of zero for the
least reliable level and one for the most reliable
one. The utilities of both grids are combined to
obtain a single utility function U1 = 0.5UA +

0.5UB which, in the present context, has equal
weights for both grids, thereby assuming that
these grids are of equal importance. In general,
different weights could be employed.

4.5. Results

We compute optimal portfolios of reinforcement
actions at different budget levels for three choices
of objective functions representing the maximiza-
tion of expected utility; the maximization of ex-
pected utility in the 10% and 20% worst case
tail of realized reliability, i.e., CV aR0.1, and
CV aR0.2. The reinforcement actions are in Fig-
ure 3. Differences in proposed reinforcement ac-
tions for different objectives can be attributed to
the fact that reinforcement actions have different
impacts across scenarios and that global actions
affect both grids. For instance, when the budget is
15000, and the objective is to maximizeCV aR0.1

and CV aR0.2, it is optimal to invest in the Spare
Transformer (ST), which contributes to the rein-
forcement of both grids.
The original and improved cumulative utility

distributions in Figure 4 illustrate the aggregated
reliability impact of optimal reinforcement actions
for different objective functions in view of all sce-
narios at the budget level 15 000. The original case
corresponds to the grid status before reinforce-
ment actions. These results help the DSO give

Fig. 3. Local and global reinforcement actions at dif-
ferent budget levels and objective functions.

more attention to the worst cases. For example, the
curve for CV aR0.1 (blue) lies below that for the
Expected Value (red) for low utilities, indicating
that the utility is less likely to fall below 0.3
when reinforcement actions are chosen to max-
imise CV aR0.1. Nevertheless, these two curves
cross between 0.3 and 0.4. While the expected
utility is better for the red curve, neither solution
dominates the other in the sense of first-order
stochastic dominance.

Fig. 4. Cumulative utility distribution for the maxi-
mization of CV aR0.1 and Expected Value.

5. Conclusion

In this paper, we develop an optimization frame-
work that integrates reliability models and ex-
pert judgments to support the process of reinforc-
ing multiple and interdependent distribution grids
in the face of multiple hazards. This framework
helps identify portfolios of reinforcement actions
that are cost-effective in mitigating the risks as-
sociated with the hazards. The DSO can use this
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Table 3. Correlation factors between global actions, local actions and scenarios.

Global Action Local Action S1 S2 S3 S4 S5 S6 S7 S8

ST BAU 1 1 1 1 1 1 1 1
ST BG 0.72 0.81 0.92 0.78 0.84 0.95 0.81 0.97
ST CS 0.75 0.84 0.72 0.86 0.88 0.89 0.91 0.89
ST UL 0.75 0.77 0.94 0.84 0.88 0.96 0.72 0.84
MC BAU 0.72 0.7 0.7 0.88 0.94 0.78 0.93 0.81
MC BG 0.92 1 0.97 0.7 0.83 0.87 1 0.87
MC CS 0.86 0.83 0.76 0.71 0.82 0.75 0.95 0.73
MC UL 0.89 0.99 0.97 0.85 0.73 0.79 1 0.74

Table 4. Correlation factor between local actions and scenarios.

Local Action S1 S2 S3 S4 S5 S6 S7 S8

BAU 1 1 1 1 1 1 1 1
BG 0.7 1 0.7 1 0.7 1 0.7 1
CS 0.7 0.7 1 1 0.7 0.7 1 1
UL 0.7 0.7 0.7 0.7 1 1 1 1

information to protect multiple grids, prioritizing
some of them or considering different objectives,
such as protecting against the worst case or maxi-
mizing the average reliability.
Our illustrative case study showcases the ca-

pabilities of the approach in the context of two
distribution grids, local and global reinforcement
actions with interdependent reliability impacts,
and three types of hazards. For simplicity, we
present our framework using only three levels of
reliability. However, the use of alternative relia-
bility levels can be readily extended to combine
standard indexes such as SAIDI or SAIFI.
The proposed framework is viable as problems

involving a much larger number of scenarios can
be handled computationally, but challenges may
be encountered when covering many distribution
grids with a broad range of reinforcement actions.
Still, there are benefits to considering the selection
of reinforcement actions holistically, given (i) all
the scenarios representing different combinations
in which the hazards may occur and (ii) the local
and global impact that portfolios of reinforcement
actions have in these scenarios. In many cases, the
parameters for such an analysis can be generated
through computational reliability models. In other

cases, it can be helpful to invite experts to think
about the required parameters as this provides
information about how well the scenarios or the
impacts of reinforcement actions are understood.
For future work, there is a potential to extend
the model to cover multiple periods explicitly and
to use a multi objective formulation rather than
considering a single utility function.
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Muñoz-Delgado, G., J. Contreras, and J. M. Arroyo
(2018). Distribution network expansion planning
with an explicit formulation for reliability assess-
ment. IEEE Transactions on Power Systems 33(3).

Osman, A. H., M. S. Hassan, and M. Sulaiman (2015).
Communication-based adaptive protection for distri-
bution systems penetrated with distributed genera-
tors. Electric Power Components and Systems 43(5).

Pan, J., X. Hou, B. Xu, and L. Kou (2019). Weaknesses
identification using reliability tracking in distribution
system with distribution generation. In 2019 IEEE
Innovative Smart Grid Technologies - Asia.

Salo, A., J. Andelmin, and F. Oliveira (2022, jun).
Decision programming for mixed-integer multi-stage
optimization under uncertainty. European Journal of
Operational Research 299(2), 550–565.

Salo, A., J. Keisler, and A. Morton (2011). An Invita-
tion to Portfolio Decision Analysis. New York, NY:
Springer New York.

Shang, L., R. Hu, T. Wei, H. Ci, W. Zhang, and H. Chen
(2021). Multiobjective optimization for hybrid ac/dc
distribution network structure considering reliability.
In 2021 IEEE Sustainable Power and Energy Con-
ference (iSPEC).

Wirtz, F. (2007). Influence on reliability of supply and
its marginal costs in medium-voltage networks. In
2007 IEEE Lausanne Power Tech.

Zhang, L., W. Tang, Y. Liu, and T. Lv (2015). Multi-
objective optimization and decision-making for DG
planning considering benefits between distribution
company and DGs owner. International Journal of
Electrical Power & Energy Systems 73, 465–474.


