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Automated Driving Systems (ADS) employ various techniques for operation perception, task planning and vehicle

control. For driving on public roads, it is critical to guarantee the operational safety of such systems by attaining

Minimal Risk Condition (MRC) despite unexpected environmental disruptions, human errors, functional faults and

security attacks. This paper proposes a methodology to automatically identify potentially highly critical operational

conditions by leveraging the design-time information in terms of vehicle architecture models and environment

models. To identify the critical operating conditions, these design-time models are combined systematically with

a variety of faults models for revealing the system behaviours in the presence of anomalies. The contributions of this

paper are summarized as follows: 1) The design of a method for extracting related internal and external operational

conditions from different system models. 2) The design of software services for identifying critical parameters

and synthesizing operational data with fault injection. 3) The design for supporting operation simulation and data

analysis.
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1. Introduction

Automated Driving Systems (ADS) employ em-

bedded electrical and electronic (E/E) systems for

advanced functionalities, including driving per-

ception, localization, decision-making, and con-

trol strategies. Especially highly automated driv-

ing systems (L4 and L5), defined by the SAE

automation levels SAE (2018), are expected to

conduct Dynamic Driving Tasks (DDT) automati-

cally according to perceived internal and external

operational conditions without direct human inter-

actions.

While the technologies for automated driving

have made rapid progress over the last decade,

challenges remain in supporting the trustworthi-

ness of such systems. In general, a trustworthy

system is believed to operate within defined lev-

els of risk despite the presence of aleatory and

epistemic uncertainties Chen et al. (2018). The

support involves many aspects of system develop-

ment, operation control, maintenance, and evolu-

tion. One key task is related to the assurance of

operational safety by attaining Minimal Risk Con-

ditions (MRC) despite unexpected environmen-

tal disruptions, human errors, functional faults,

and security attacks. For ADS, this is however a

more challenging task than for more conventional

driving systems (below L3) as learning-enable

components (LEC) are directly used in the opera-

tion perception, task planning, and control. Based

on advanced ML/AI algorithms, such learning-

enable components approximate some desired be-
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haviours. They normally contain huge amounts

of parameters (weights and biases), which are

identified with machine learning techniques. This

implies several challenges in safety engineering.

Some well-known reasons include Salay et al.

(2017): 1) Training data may not cover all possi-

ble operational conditions; 2) Safety requirements

may be incomplete due to unknown probabilistic

nature of LEC; 3) The explainability of LEC is

often hampered by the non-transparency of such

components. These call for novel methods and

tools for ADS modelling, analysis, testing, and

condition monitoring.

In this paper, we present a conceptual frame-

work aimed at facilitating the safety assurance for

ADS by providing: 1) The design of a method for

integrating the internal and external operational

conditions by modelling the vehicle architecture

and environment models. 2) The design of soft-

ware services for automatically identifying critical

parameters and synthesizing operational data by

fault injection. 3) The design for supporting oper-

ation simulation and data analysis.

2. Related Work

In the system development, the specifications of

Operational Design Domain (ODD) describe the

operational conditions where the ADS is intended

to function concerning the roadway types, speed

ranges, lighting conditions (day and/or night),

weather conditions, and other operations con-

straints. The specifications play a key role in

safety engineering by stipulating the intended

functional system boundary Greenblatt and Sha-

heen (2015). For highly automated driving sys-

tems (L4 and L5), the ADS should be able to au-

tomatically achieve MRCs by detecting potential

ODD excursion. To this end, the following mea-

sures in system development are expectedChen

et al. (2018): 1) Identifying appropriate ODD as

system requirements; 2) Developing suitable driv-

ing functions and components for meeting these

requirements; 3) Preventing unsafe operating con-

ditions when system failure or ODD exit occurs.

In the automotive industry, it is evident that the

established approach to functional safety as de-

fined in ISO 26262 ISO26262 (2022) Functional

Safety (FuSa) is no longer sufficient for ADS. One

complementary standard is ISO 21448 Safety of

the Intended Functionality (SOTIF). The SOTIF

specification provides a general safety assurance

framework and guidance on measures to ensure

the safety of the intended functionality (SOTIF)

ISO21448 (2022). One key effort in supporting the

safety engineering is the usage of domain-specific

models (DSM) to capture the system faults and

operational knowledge of concern (e.g. Chen et al.

(2013); Koopman and Wagner (2018); Gyllen-

hammar et al. (2020)). Such models stipulate the

system parameters, design solutions and require-

ments and thereby constitute the basis for describ-

ing the internal operational conditions of ODD as

well as for tracing their system-wide interdepen-

dence. Meanwhile, the environment of the ADS,

are concerned to maintain the intended functional

safety. Current work in Chen et al. (2022) pro-

poses a generator based on OpenScenario, an en-

vironment model, to define the external opera-

tional conditions. This environment model spec-

ifies different elements such as movable objects

and their actions, geo-spatial stationary features,

traffic rules, laws, and policies.

In engineering practices, the provision of meth-

ods and tools connecting requirements, design

decisions, formal analysis, testing outcomes and

other operational feedback plays a key role in

safety assurance. A methodology for combining

system models and condition monitoring services

to enable dynamic assessment of operational un-

certainties and risks is given in Chen and Lu

(2017). The analysis of field operational data, sup-

ported often by machine learning methods, allows

the enrichment of knowledge about system oper-

ation Elgharbawy et al. (2019). Condition moni-

tors help detect potentially unsafe and unexpected

behaviors caused by unexpected environmental

conditions and functional faults Koopman and

Wagner (2016); Törngren et al. (2018); Koopman

and Wagner (2018); Rahman et al. (2021). For-

mal methods have also been employed in current

practices for verifying the safety of autonomous

driving systems (ADS) Hekmatnejad et al. (2019);

Zapridou et al. (2020); Rahman et al. (2021).

Nevertheless, the capability in supporting the rea-
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Fig. 1. The Architecture of the Proposed Framework. We propose the conceptual framework to enhance safety

assurance for ADS by supporting operation simulation and data analysis.

soning of the potential risks and their sources

depends on the scope and richness of underlying

system models. In Törngren et al. (2018); Hartsell

et al. (2021); Chelouati et al. (2022), researchers

also propose various learning-based techniques

for condition monitoring and risk assessment. To

optimize the performance, some of these faults

could be labelled or isolated through historical ex-

periments, system analysis and testing, and safety

concepts (e.g., safety mechanism with redundancy

design for fault tolerance).

3. Overview

In this paper, we present the design of a frame-

work that aims at assuring the operational safety

of ADS by connecting system models and oper-

ational data analysis (Fig. 1). The design mod-

els contain the specifications of system architec-

ture and external environment. A software ser-

vice (referred to as critical environmental parame-

ters identifier) is introduced to derive potentially

safety-critical environmental conditions and the

corresponding operational scenarios to be simu-

lated. To verify and validate the robustness of the

intended functionalities of ADS, another software

service (referred to as critical vehicle parameters

identifier) is employed to elicit potentially critical

parameters of a vehicle for a specification of fault

injection. To verify and test the system models

and their parameters, we support simulation plat-

forms (e.g., CARLA) to collect operational data

by using these generated specifications of opera-

tional scenarios and faults. A system operational

analyzer is designed to collect and analyze the

operational data generated by the simulation runs.

This analyzer automatically classifies the failure

cases and the related component anomalies. The

results are then fed back to the system models for

the enrichment of system knowledge.

4. System Modeling

The system models define and parameterize all

design information of the ADS, including the in-

ternal and external operational conditions (Block

I in Fig. 1). However, exploring the overall system

design space and the implied operational condi-

tions is a complex and intractable task. Therefore,

we generate these operational conditions by pro-

viding: 1) Using Architecture Description Lan-

guages (ADL) to define and parameterize ADS

and its functional components; 2) Using Scenario

Description Languages (SDL) to model and quan-

tify the external operational conditions.

4.1. Specifying ADS Architecture

Formally justifying AI component’s behaviours,

performance and other requirements are critical

to ensure the safety of ADS. However, this could

be a challenging task because of various purposes

and techniques of AI components. To solve this

issue, we elicit the internal operational behaviours

by first modelling the ADS contexts with mul-

tiple abstractions ranging from vehicle-level fea-

tures to platform-specific technical-level features

(Fig. 1). The approach is based on EAST-ADL,

an architecture analysis and design language for
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Fig. 2. The design of system operational analyzer based on condition monitoring.

automotive development Chen et al. (2013). The

ADS system is first described at the vehicle-level

in a solution-independent way, where each mod-

ule represents an intended driving task. The un-

derlying functional level description specifies the

underlying functional I/O and algorithmic features

for each driving task. Towards the final system re-

alization, the technical level description specifies

corresponding software and hardware architec-

tures, covering the needed run-time environment

services, data models, I/O and communication

networks, etc.

Given such a modelling framework, we extract

a set of key vehicle parameters. These parameters

define and quantify the ADS internal operational

conditions across different abstraction levels.

4.2. Specifying ADS Environment

To ensure the operational safety of ADS, we

also need to specify the environmental conditions.

Our approach follows the environment modelling

method introduced in Chen et al. (2022); Fremont

et al. (2020). The scope of modelling includes

1) Scene, which describes a snapshot of the en-

vironment, including traffic participants, weather

conditions, and map information; 2) Permanent

goals & values, which encompass traffic rules,

laws, and policies. 3) Actions & events, which

support actions with traffic participants. We also

develop an environment modelling language Kang

et al. (2022) to integrate and manage the external

operational conditions of concern. The approach

also allows detailed description of scenes. Further-

more, the language employs functional definitions

to encapsulate related actions & events.

5. Synthesizing Critical Parameters
from the System Models

Services shown in Block II of Fig. 1 provide sup-

port for identifying and configuring the cases of

simulation for synthesising operational data. The

causes of ODD excursion under consideration in-

clude unexpected environmental conditions, faults

from the ADS, and their combinations.

5.1. Identifying Critical Parameters

Two functions are developed to identify the

safety-critical parameters in the vehicle and en-

vironment models (the dash-lined box in Block

II of Fig1). To identify the critical environmen-

tal conditions, we adopt a Reinforcement Learn-

ing (RL) based approach as introduced in Kang

et al. (2022) to explore state space. Based on

the environment models, we also describe action

sequences of traffic participants. To understand

the corresponding effects and robustness of ADS

components, another identifier is used to search

the critical vehicle parameters. The backbone of

this critical vehicle parameters identifier is to

search causal relationships based on the prede-

fined attributes (e.g., failure logic) in the ADS

models. Compared with time-consuming simula-

tions for all the vehicle parameters, the identi-

fied results explicitly reveal correlations between
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Fig. 3. Parameter treatment based on Neo4j. In this case, the internal and external operational conditions are

described as vehicle and environment models, exported as generic files into the Neo4j. According to the predefined

attributes, their dependencies are extracted automatically by Neo4j tool.

vehicle and environment models under specific

operational conditions, accelerating to verify and

validate the operational safety of the ADS.

5.2. Specifying Fault Injection

Fault injection provides support for evaluating

system robustness and residual risks. We consider

a wide variety of fault types across the compo-

sitional hierarchy of ADS. For example, a per-

ception system in ADS contains: 1) Sensors (e.g.,

camera and radar), 2) Learning-enable functions

(e.g. neural networks), 3) Sensor fusion func-

tion for world-modeling. These components can

be associated with different fault parameters: 1)

Failure-in-Time (FIT) and ageing factor Fabarisov

et al. (2022). 2) Gaussian noise and solid occlu-

sions Jha et al. (2018). 3) Hardware specific faults

like bit-flip and stuck-at Su and Chen (2022). We

use a fault injector to assign these fault parameters

into ADS components under different environ-

mental conditions.

6. Analyzing Simulated Operational
Data by Condition Monitoring

The simulation platform is shown as Block III of

Fig. 1. Given the specifications of critical envi-

ronmental and vehicle parameters, the simulation

cases are configured and implemented. The simu-

lation operational data are collected and analyzed

by an analyzer, shown as the system operational

analyzer in Block IV of Fig. 1 . The generated

data characterize the interactions of ADS and its

environment by sampling the simulated opera-

tional data and signals. A system operational an-

alyzer is then introduced to detect the anomalies

and failure cases for the enrichment of system

knowledge. This helps assure ADS safety by: 1)

Improving the tolerance of the ADS for functional

faults by synthesizing the results of the anomaly

detector; 2) Enhancing the robustness of the ADS

under different external operational conditions by

analyzing features from the failure analyzer; 3)

Completing the parameters of the ADS and envi-

ronment models.

6.1. Anomaly Detection

Anomalies can exhibit significantly different fea-

tures (e.g., data value) from the rest of the data.

Anomalies usually indicate the observations of

errors occurred in the system. Some of these errors

cause system failures according to the system de-

sign and failure logic. Therefore, to ensure system

safety, associating possible component anomalies

with critical system failures by monitoring and

analyzing the operational behaviours becomes im-

portant. In Fig. 2, we illustrate an example using

deep learning-based methods to detect outliers,

a common type of anomalous data. The detector

infers the reasons and consequences of the outliers

by comparing them with fault features acquired

from the fault injection, providing a reference for

ensuring operational safety.
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Fig. 4. Examples of fault injection for camera sensor The weather conditions are visualized by the corresponding

parameters from the environmental model. The solid occlusion is defined in the fault injector.

6.2. Failure Analysis

Anomalies or errors in system components can

propagate to system failures which in turn lead

to undesired ODD excursions. To capture the be-

haviour of error propagation from a component,

we use multiple-dimensional encoders to model

and classify the patterns implied by run-time

data. To cope with the complexity, a generative

model (e.g., Variational Autoencoder) is prefer-

able due to the advantages of handling multiple-

dimensional data with latent space representation

(e.g,. the motion estimation in Karl et al. (2016)).

When combined with pattern recognition, the ap-

proach can effectively classify even unexpected

operational situations. As illustrated in Fig. 2,

the sampled operational data are encoded and

grouped into different patterns (e.g., manifolds),

where each color indicates an observed specific

operational condition. When an encoded model

mismatches with its neighbours, unexpected oper-

ational conditions would have occurred. By clas-

sifying these observations, a database synthesizes

potential operational risks, which support to en-

rich the system models.

7. Case Study: Safety Analysis of the
Object Detection Module

To evaluate our framework, a case study with

the modeling and simulation of an ADS system

with object detection module has been carried out.

The system is expected to work in all weather

conditions. We define and qualify the weather

parameters in the environment models. Following

these environment parameters, we use Neo4j (Fig.

3), a graphical database, to identify critical ve-

hicle parameters. In the functional level descrip-

tion, the object detection module is decomposed

into a camera component and an AI component.

To achieve the intended functionalities of these

components, the technical level description refines

these components with specific behaviors (e.g.,

the camera should capture the RGB-D image, the

AI component should detect objects with the re-

gions of interest).

Next, the vehicle and environment parameters

generate different ADS operational scenarios to

be simulated with the injections of functional

fault (e.g., solid occlusions) in the object detec-

tion module. The results show that although this

module works well both daytime and dawn, it is

vulnerable to solid occlusions. Furthermore, such

results reflect the functional behaviors of the AI

component should be enhanced during the dawn.

Therefore, the system operational analyzer indi-

cates that the anomaly detector should monitor

images with solid occlusions. Meanwhile, the fail-

ure analyzer encoding data from different sensors

should classify different weather conditions (e.g.,

if the current time is dawn) to prevent accidents

from the low precision of the AI component.

8. Discussion and Future Work

In this paper, we have presented a conceptual

framework for enhancing safety assurance by sup-

porting fault-injection simulation and data-driven
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analysis of failure behaviours. In future work,

critical parameters can be identified by Reinforce-

ment Learning with formal methods. The formal

methods support to improve the performance of

the RL agent and provide an interpretation for

selecting critical parameters. Moreover, the risk

assessment approaches proposed by ISO 26262

(e.g., HARA) can be combined for the refined

safety goals and requirements specification. Fault

Tree Analysis (FTA) based description of faults

and error propagation can also be combined as

labels for machine learning or integrated as holis-

tic models for simulation design. Another desired

feature is that the operation analyzer should pro-

vide a support for quantifying the probability of

ODD excursions.
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