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In actual advanced technical applications, like autonomous driving, Machine Learning is utilized. Most of these
methods work well in certain and/or trained situations but can fail in unknown or uncertain situations. Therefore,
overreliance might lead to safety-critical situations. Detecting objects appears as a key task for the safe operation of
automated systems, like autonomous vehicles. To address potential failures of an object detection system, different
redundant approaches can be used. Recent research aims for fusion, combining different modalities and architectures
to utilize their advantages. It can be assumed that a combination of diverse approaches compensates each other’s
drawbacks and leads to improved reliability and robustness of the final prediction. In this contribution the fusion
of detections of multiple detection systems at a detection level is studied using different opinion pooling strategies.
The predicted detection score is calibrated using the true positive rate at a score level. This results in a standardized
score over different detection approaches. Afterwards detection candidates of different approaches are associated
and a new detection candidate is generated in a fusion stage. Therefore missed or false positive detections of one
apporach can be compensated based on a redundent set of predicted object candidates. The aim is to highlight
certain detections and to reduce the detection score of false positive detections. The fused approach generates a 3 %
improvement in comparison to the best individual results of single approaches, additionally improved robustness is
achieved.

Keywords: Object detection, decision fusion, redundent systems, opinion pooling, autonomous driving, robust object
detection.

1. Introduction

In modern technical applications such as au-

tonomous driving, learning-based methods have

become increasingly popular due to their ability

in providing valuable information for decision-

making. However, the reliability of these ap-

proaches can be compromised in uncertain or

unknown situations, which may lead to safety-

critical outcomes. To address the potential under-

performance of one approach, a set of diverse

and redundant approaches can be used. The pre-

dictions of multiple approaches can be analyzed,

associated, and fused to provide a final result.

This paper investigates the fusion of multiple ob-

ject detection approaches to improve reliability

and robustness in safety-critical applications. The

study involves generating detection candidates on

the nuScenes dataset [Caesar et al. (2020)] us-

ing multiple detection methods and applying a k-

fold cross-validation scheme. An opinion pooling-

based fusion strategy is employed based on the

prior association between object candidates from

different approaches. The results of different con-

figurations are compared to a baseline. The con-

tribution of this study is structured as follows. In

section 2, an overview of object detection, ob-

ject detection fusion, and situational dependencies

is presented. In section 3, the applied approach
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is introduced, including calibration of the initial

detections, followed by association, building the

opinion profile, and finally fusing the detections.

In section 4, the obtained results are discussed.

Finally, a summary, conclusion, and outlook are

presented.

2. Related Work

In this section, common approaches for object

detection are discussed, focusing on the differ-

ences between different modalities. Furthermore,

the concept of decision fusion in object detection

and situational variation are reviewed and exam-

ples of early, middle, and late fusion methods are

provided.

2.1. Object detection

In recent years, object detection using image-

based approaches has gained significant research

interest, especially for classification tasks. State-

of-the-art techniques are divided into two main

categories, one-stage and two-stage. One-stage

systems , compare Redmon et al. (2016) and Liu

et al. (2016), directly learn detection from the

entire image and can be trained end-to-end. Al-

though this results in a simple architecture and

low inference time, they tend to perform worse

than two-stage approaches. Two-stage approaches

rely on region proposals, which can either be pre-

computed, f.e. Girshick (2015), or obtained from

a region proposal network, Ren et al. (2015). The

region proposal network can operate on a feature

map obtained from the image or on additional

sensor data, as presented in Nabati and Qi (2019).

However, image-based approaches are known

to be sensitive to lighting conditions and texture

variations of the objects being detected. Under

challenging conditions, such as varying bright-

ness, noise, or objects with poor texture like re-

peating patterns or uniform surfaces, their perfor-

mance drops significantly. Additionally, accurate

estimation of 3D positions from 2D images has its

own challenges.

LiDAR-based techniques can achieve high per-

formance of 3D object detection due to the avail-

able depth information. The availability of infor-

mation depends on distance, object size, or shape,

affecting the detectability of objects. However,

LiDAR data only provide sparse depth informa-

tion, and textural information is not available.

To overcome these limitations, recent approaches

transform the point cloud data into voxel or pil-

lar representations, resulting in a dense structure.

Features are extracted voxel- or pillar-wise and

passed to a region proposal network for the final

detection stage [Zhou and Tuzel (2018); Yan et al.

(2018); Lang et al. (2019); Yin et al. (2021)].

2.2. Object detection and decision fusion

Fusion aims to combine existing advantages by

utilizing complementary aspects of available sig-

nals, information, or decisions. Fusion in the con-

text of object detection can be classified as early

fusion, middle fusion, or late fusion, Feng et al.

(2019). Late fusion of predicted candidates can

be denoted as decision fusion. Early fusion can

be performed by projections or augmentation of

the available sensor data. For example, Corral-

Soto and Liu (2020) projected a LiDAR point

cloud into a front view depth map and used it

as an overlay for camera images. In Vora et al.

(2020) camera images are used to augment a

point cloud by adding pixel color as additional

information. Middle fusion can be performed in

various ways, examples are: Nabati and Qi (2019)

proposed the generation of region proposals based

on radar points and evaluated the generated pro-

posals with an image-based detection system like

Fast R-CNN. Feng et al. (2020) generated separate

features for images and point clouds. Proposals

are generated in 3D through the LiDAR network.

Features from LiDAR and image domain are pre-

sented to a fusion network performing scoring

and bounding box regression using proposals and

region of interest features. Proposals from radar or

image domain are suggested for practical applica-

tions. Late fusion aims for the fusion of high level

features or preliminary predictions. For example,

in Qi et al. (2018) a pre-trained model is used

to predict 2D region proposals on image data.

Each proposal transformed into a frustum, limit-

ing the search space for a LiDAR-based detection

pipeline. Despite the improvement, this method

requires detections in both domains, camera and
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LiDAR. In Pang et al. (2020) 2D and 3D predic-

tions are fused by a lightweight fusion network.

Fusion was performed based on the predicted

score, intersection in the 2D image plane, and

distance in 3D. The fusion result was a new score

map. It can be assumed that the used model can

learn distance dependencies. Further influences

are not represented. Decision fusion is commonly

applied using different opinion pooling strategies.

In Dietrich and List (2016) different strategies

like linear, geometric, and multiplicative opinion

pooling are discussed.

2.3. Situational variation in object
detection

Real-world applications are facing a diverse set

of situations. Situations are defined by environ-

mental influences introducing uncertainties. These

environmental influences are represented in the

sensor data, as well as the obtained predictions

of single or multiple detection systems. Influences

like weather or illumination of the scene can affect

the whole detection range. In Corral-Soto and

Liu (2020) complementary sensors are analyzed

considering the advantages and disadvantages and

compared with an early fusion approach. The

results are shown over different artificial dark-

ness levels and distance rings. Clear dependencies

can be observed and are quantified as average

precision values. In Yin et al. (2021) decreasing

performance of anchor-based approaches during

dynamic situations like turning maneuvers, is re-

ported. In the case of redundant systems, multiple

predictions for potential objects can be available.

Additional information can be obtained based on

agreement or conflicts in the available predictions.

In Redmon et al. (2016) it is shown that the com-

bination of diverse detection approaches can lead

to improved overall performance.

It can be concluded that indicators for detection

performance can be diverse. Autonomous systems

need to be aware of varying uncertainties intro-

duced by situational variations.

3. New object candidate fusion approach

3.1. Detection pipeline

The initial object candidates are produced using

LiDAR-based detection approaches. In this con-

tribution, one modality is used, but theoretically,

multimodal approaches can be fused in the same

manner. Using the implementation of OpenMM-

Lab (2020) four different configurations are de-

fined. The configuration is based on PointPillar

introduced in Lang et al. (2019) and CenterPoint

proposed in Yin et al. (2021) using different voxel

and pillar grids. The approaches are trained on

the nuScenes dataset [Caesar et al. (2020)]. The

standard split is discarded and a 5-fold cross-

validation scheme is used. Training is performed

using all available classes on 3 folds. The re-

maining two folds are used for calibration and

validation. To obtain the initial set of object can-

didates, 10 iterations are trained. The baseline is

obtained from the best and worst performance of

the available approaches, as shown in tab. 1.

3.2. Calibration of detection score

Due to the different detection pipelines and vary-

ing performance based on different classes, the

predicted detection score can show different char-

acteristics. Furthermore, the detection score does

not correlate with a transparent metric or value.

Therefore, the predicted detection score is cali-

brated as

tpr = fcal(score), (1)

mapping the score to the correlated true-positive-

rate tpr using the calibration function fcal. Sim-

ilar to the tpr the detection-rate dr and miss-rate

mr are calculated as

dr = fdr(dist), (2)

and

mr = 1− fdr(dist), (3)

estimating the dr and mr based on a particular

distance using the estimation function fdr. The

functions fcal and fdr are obtained from a curve

fitting process. For the fitting linear, sigmoid and

logarithmic models are defined. Underpopulated
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Table 1. Single approach performance overview and baseline definition.

↑Average Precision [%] ↑True Positive scores [%]
0.5 1.0 2.0 4.0 mAP trans scale orient vel attr mTP

Car

CP V 01 74.83 83.73 86.47 87.67 83.17 82.14 84.80 87.39 74.94 85.50 82.96

CP V 0075 75.20 83.45 86.08 87.28 83.00 82.59 84.83 87.49 75.93 85.28 83.22
CP P 02 72.12 81.27 84.26 85.73 80.84 81.49 84.13 78.60 70.26 83.20 79.53
PP 68.26 81.50 85.75 87.47 80.74 78.27 84.22 80.41 75.91 84.31 80.62

BL top 75.20 83.73 86.47 87.67 83.17 82.59 84.83 87.49 75.93 85.50 83.22
BL bottom 68.26 81.27 84.26 85.73 80.74 78.27 84.13 78.60 70.26 83.20 79.53

Proposed:
Best fused 77.72 86.79 89.54 90.74 86.20 82.53 84.84 86.16 75.06 84.32 82.58

Δ top [pp] 2.52 3.06 3.08 3.07 3.02 -0.06 0.01 -1.33 -0.87 -1.18 -0.64
Δ bottom [pp] 9.46 5.52 5.29 5.01 5.46 4.26 0.71 7.56 4.80 1.13 3.05

Pedestrian

CP V 01 80.40 82.42 83.56 84.82 82.80 84.56 70.49 66.65 76.09 92.87 78.13

CP V 0075 82.62 84.01 85.02 86.12 84.44 86.34 70.91 67.29 77.95 92.85 79.07

CP P 02 74.34 76.24 77.46 79.17 76.80 83.96 70.82 70.73 75.23 94.40 79.03

PP 71.72 73.08 74.30 76.13 73.81 84.15 70.58 67.46 74.63 94.60 78.28

BL top 82.62 84.01 85.02 86.12 84.44 86.34 70.91 70.73 77.95 94.60 79.07
BL bottom 71.72 73.08 74.30 76.13 73.81 83.96 70.49 66.65 74.63 92.85 78.13

Proposed:
Best fused 82.87 84.23 85.08 86.13 84.58 86.16 71.03 77.16 76.68 95.87 81.38
Δ top [pp] 0.25 0.23 0.05 0.01 0.13 -0.17 0.12 6.43 -1.27 1.27 2.31
Δ bottom [pp] 11.15 11.15 10.78 10.00 10.77 2.20 0.54 10.51 2.05 3.02 3.25

Interpretation: Left to right: Average Precision with distance threshold in [m]; mAP denotes mean Average Precision; True Positive

scores based on true positive detections at distance threshold 2.0 m; translation score, scale score, orientation score, velocity score,

attribute score; mTP denotes mean True Positive scores. Details on calculation can be found in Caesar et al. (2020); CP V denotes

CenterPoint Voxel, CP P denotes CenterPoint Pillar, PP denotes PointPillar, BL denotes baseline; Best performance in bold

sections are up-sampled to ensure uniform distri-

bution. This is relevant to avoid a bias towards

a specific section during the fitting process. The

results are evaluated using R2. The fit with the

highest R2 value is used for fcal and fdr.

3.3. Association of detection candidates

Detections generated according to sec. 3.1 are as-

sociated using different distance measures similar

to the association used in Wang et al. (2021). Dis-

tance d is calculated based on euclidean distance

L2

dL2 =
||dist||2

dist threshold
, (4)

with dist being the center distance between the

target object and the ego vehicle, intersection over

unit (IoU)

dIou = 1− IoU, (5)

with IoU = |A∩B|
|A∪B| , and generalized IoU (GIoU)

dGIoU = 1−GIoU, (6)

with GIoU = IoU − |C\(A∪B)|
|C| and C as small-

est enclosing convex object [Rezatofighi et al.

(2019)]. Based on the distance, Hungarian algo-

rithm for bipartite matching between detections of

two detection pipelines is performed. The output

provides matched and unmatched detections. This

is repeated for all available combinations of de-

tection pipelines. Based on the obtained matches,

instances are defined. Instances represent a clus-

ter of detections referring to the same physical

object. Each detection in an instance is from a

unique detection pipeline. Each detection can only

be assigned to one instance. Therefore, in this

example, an instance consists of a maximum of

four detections.
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3.4. Fusion of detection candidates

For the fusion of detection candidates, an opinion

pooling strategy is applied. The related opinion

profile is build based on the obtained instance. If

a detection of a detection pipeline is represented,

the probability P is assumed to be

Pi = tpr = fcal(score). (7)

If a detection of a detection pipeline is not repre-

sented, P is assumed to be

Pi = mr = 1− fdr(dist), (8)

with the distance as situational parameter. The

distance of the missing detection is estimated by

the average distance of available detections within

the instance. Furthermore, a weight is calculated

for each opinion by using the match information.

Each match contains the two detections A and B

and a normalized distance measure d in the range

[0, 1]. The weight is calculated by

wi = 0.1+
∑N

n=1

tpr(An) + tpr(Bn)

2
(1−dn),

(9)

where N is the number of matches containing

a detection related to detection pipeline i. The

weight of missing and single detections is defined

to be 0.1 since a 0.9 threshold is applied in the as-

sociation step. Therefore, the weight for instances

with only one detection is uniform. The weights

wi are not normalized. Since it is not intended

to estimate a new detection, a particular detection

is selected based on a selection rule. Afterward,

a new detection score is estimated based on a

pooling rule. The selection of the final detection

box is performed by either selecting according to

the highest score or by the highest weight. If two

detections are available, the weight is identical

and selection is performed by the highest score.

If only one detection is available, the selection is

obsolete. Following Dietrich and List (2016) the

pooling will be performed as average pooling

PA =
1

m

∑m

i=1
Pi, (10)

linear pooling

PA =
∑m

i=1
wi ∗ Pi, (11)

or geometric pooling

PA =
∑m

i=1
P

1
wi
i , (12)

where m is the number of opinions in the profile.

3.5. Validation Strategy

Evaluation of the results is performed using the

classes ’car’ and ’pedestrian’. After the fusion the

final predictions are evaluated using the ground

truth information. Average precision is calculated

using different distance thresholds and different

true-positive metrics are calculated at distance

threshold 2 m following the nuScenes evaluation

scheme. The evaluation metrics are obtained for

all 10 iterations. Reported metrics are always the

mean of the 10 individual iterations. The per-

formance difference is calculated by subtracting

the baseline from the fused result. Performance

difference is reported in percentage points (pp).

The best result is identified by averaging mAP

and mTP over all considered classes.

Fig. 1. Average precision for classes ’car’ and ’pedes-
trian’ at distance threshold 2 m; CenterPoint Voxel 01
is shown as reference; The n value in ”n fused” denotes
the number of fused predictions

4. Application and Results

The introduced fusion strategy is applied using

36 different configurations. To improve the read-
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Fig. 2. Translation score for classes ’car’ and ’pedes-
trian’ at distance threshold 2 m; CenterPoint Voxel 01
is shown as reference; The n value in ”n fused” denotes
the number of fused predictions

ability of the results, only the difference to the

’baseline top’ is shown. The results for the average

precision are shown in fig. 3. The results for the

true-positive scores are shown in fig. 4. In tab. 1

the best configuration for object candidate fusion

is compared to the baseline. The ’Best fused’ re-

sult is obtained using IoU distance, linear pooling,

and selection based on highest weight. It can be

seen that mAP is increased for 3.02 pp for class

’car’ and mTP is increased for 2.32 pp for class

’pedestrian’ compared to baseline top. In the case

of the detection of pedestrians, no significant im-

provement in mAP can be achieved. The reason

can be the worse association ability of smaller ob-

jects. In fig. 1 average precision curves are shown

for detections with four or fewer detections sepa-

rately. It can be seen that class ’pedestrian’ has a

high ratio of fused detections based on less than

four predictions compared to class ’car’. While

the TP score for the translation is not improving

on average, it can be seen that fused detections

based on four detections still show a better per-

formance than the reference (fig. 2). Overall, it

can be concluded that fusing multiple detections

helps to improve the overall performance. Fusion

of ’pedestrian’ detections remains difficult, but for

cases with successful association improvement for

mAP and mTP can be achieved. Furthermore,

the fused results are at least equal to the average

precision of the best available individual detection

systems. It can be assumed that the fused results

compensate for the performance deficits of sin-

gle approaches of the available detection systems,

without explicitly choosing the ones. In this sense,

a robustness enhancement can be obtained.

5. Summary and Conclusion

In this contribution, an opinion pooling-based fu-

sion strategy for 3D object detection has been pre-

sented. Different configurations have been tested

and compared on different object classes. An

improvement considering different metrics was

achieved and improved robustness is obtained.

The results among the tested configurations have

shown that IoU leads to better associations than

the other distance measures. The different opinion

pooling rules seem to perform similarly, with only

slight performance changes. An improvement can

be achieved if box selection is performed based

on the highest weight, calculated using distance

and tpr of associated detections. This can be ex-

plained due to the better representation of unity

among different detections. Miss classifications at

the detection stage have not been considered, but

might have a relevant impact on the results. Future

work will focus on the quantification of the actual

reliability of detections obtained from a stand-

alone approach or fusion-based approaches based

on situational variables.
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