
Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

Edited byMário P. Brito, Terje Aven, Piero Baraldi, Marko Čepin and Enrico Zio
©2023 ESREL2023 Organizers. Published by Research Publishing, Singapore.
doi: 10.3850/978-981-18-8071-1_P274-cd

A new efficient method to find a suboptimal allocation of components in a series-
parallel structure

Jacek Malinowski
Systems Research Institute, Polish Academy of Sciences, Poland. E-mail: jacek.malinowski@ibspan.waw.pl

A method of optimizing the allocation of two-state independent components in a series-parallel structure is
presented. Such a structure is composed of parallel substructures arranged in series and is considered operable if at
least one component in each substructure is operable. The components are assumed to have different failure
probabilities, so the system reliability depends on where they are located in the structure. The optimal allocation
minimizes the system failure probability or, alternatively, maximizes its reliability. Interestingly enough, while the
optimal components allocation problem for a parallel-series structure (i.e. series substructures arranged in parallel)
has a well-known simple solution, the same does not hold for a series-parallel one. The considered problem has
been investigated by several researchers who proposed quite elaborate solutions. This paper presents a recently
developed, simple and efficient procedure finding a nearly optimal allocation, and sometimes the optimal one. The
presented approach is based on a theorem specifying a threshold value that cannot be exceeded by a series-parallel
system’s reliability. Starting from some random allocation and using pairwise interchanges of components
between the parallel substructures, the algorithm finds successive allocations that yield system reliabilities
oscillating towards the value specified by the above theorem. In this way a suboptimal (or, many a time, optimal)
allocation is obtained. An important feature is that the method’s accuracy is expressed by the easy-to-compute
upper bound of the difference between the optimal reliability and the obtained suboptimal value. The performed
tests show that the method allows to find a (sub)optimal solution in a relatively small number of steps. Illustrative
examples are given that demonstrate the method’s modus operandi.

Keywords: Series-parallel structure, reliability, components independence, pairwise interchange,
optimal/suboptimal components allocation.

1. Introduction
This paper studies the problem of optimal
components allocation in a series-parallel
reliability structure. Such a system is usually
represented as a block diagram composed of
serially arranged substructures, each of which
consists of components arranged in parallel. All
the components are assumed to be binary (either
operable or failed) and independent (each
component fails with a probability independent
of the states of the remaining ones). The author
presents a fast, nearly optimal method of
allocating components with different failure
probabilities to individual subsystems with the
purpose of maximizing the system’s reliability.
Interestingly enough, while the optimal
components allocation problem for a parallel-
series system (i.e., composed of series
subsystems arranged in parallel) has a well-
known simple solution (see El Neweihi et al.

(1986)), this is not the case with a series-parallel
one.

The optimal allocation problem in
reliability theory has been investigated by a
number of researchers who proposed quite
elaborate methods of its solution. Different
approaches to optimizing not only series-
parallel, but coherent systems in general, can be
found in older papers, e.g. Boland et al. (1989),
Bhattacharya and Samaniego (2008), Prasad and
Raghavachari (1998), Lin and Kuo (2002),
Yalaoui et al. (2005). Over the years, the
considered problem has evolved into several
variants. Many authors study the redundancy
allocation problem for a series-parallel system
(see Feizabadi and Jahromi (2017) and Zhang
and Li (2022), where the problem definition and
comprehensive literature surveys can be found).
In a few papers, e.g. Fang et al. (2022), Zhang et
al. (2022) or Lu et al. (2023), it is assumed that

1151

1152 Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

the components are mutually dependent. Other
authors, e.g. Yalaoui et al. (2005), assume that
certain cost is involved in placing a component
in a particular location in the reliability structure
and attempt to find the allocation ensuring the
minimal total cost. The issue of optimal
components arrangement is also analyzed in the
context of shock models. See Ling at al. (2021)
for recent results and relevant bibliography.

In the current paper, it is assumed that
independent components with given failure
probabilities can be placed in arbitrary locations
in a series-parallel structure. Two algorithms are
presented that, starting from a random initial
allocation and using pairwise interchanges of
components between the parallel substructures,
find the (sub)optimal allocation that (nearly)
maximizes the system reliability. The difference
between the optimal and suboptimal reliabilities
can be estimated using the author’s theorem that
gives an upper bound on the optimal value. The
operation of the algorithms is illustrated with
several simple examples.

 The optimization problem considered in
this paper was earlier addressed in Kuo and Zuo
(2003), where the system reliability was also
improved by using pairwise interchanges, but no
estimate of the difference between the optimal
and suboptimal reliability was given, and the
components interchange procedure proposed
herein is likely more efficient.

2. Notation and the main theorem
The following notation will be used in the paper:
n – the number of parallel subsystems in the

considered series-parallel system
mj – the number of components in the j-th

subsystem, j=1,…,n
qij – the failure probability of the i-th component

in the j-th subsystem
Qj – the set of failure probabilities of the

components in the j-th subsystem, i.e.
Qj={qij, i=1,…,mj}

Q – the set of failure probabilities of all the
system’s components, i.e. Q=Q1�…�Qn

�j – the product of all failure probabilities in Qj,
i.e.

� – the product of all failure probabilities in Q,
i.e. �

R – the system reliability, i.e.

We also set

Theorem 1
Let the components of a series-parallel system
have arbitrary failure probabilities such that their
product is equal to �, where 0<�<1, i.e.

 (1)

Then, the system reliability is maximized when
the failure probability of each parallel subsystem
is equal to �1/n, i.e.

 (2)

Hence, the maximum system reliability amounts
to [1 – �1/n]n .

Proof: The detailed proof will appear in the
extended version of this paper, being prepared
for publication.

Note that Eq. (2) holds if, for instance, the
failure probability of each component in the j-th
subsystem is equal to � to the power of 1/mj�n.
Also note that Theorem 1 assumes that the
failure probabilities can take arbitrary values,
provided that their product is equal to �, whereas
the components of the considered system have
fixed failure probabilities.

3. Two algorithms for optimizing the system
reliability

It follows from Theorem 1 that the system
reliability reaches its maximum if the
components are arranged in such a way that the
failure probabilities of the individual parallel
subsystems are as close as possible to �1/n. Such
an arrangement can be obtained by composing
the set Q1 of those failure probabilities from Q
that minimize |�1 – �1/n|, then composing the set
Q2 of those failure probabilities from Q \Q1 that
minimize |�2 – �1/n|, etc. The final arrangement is
thus a result of a (n–1)-step procedure, where Qj
is composed of those failure probabilities from
Q \ (Q1�…�Qj–1) that minimize |�j – �1/n|. We
assume that Q1�…�Qj–1=� for j=1. The
probabilities composing Qj are selected by
means of pairwise interchanges between Qj and
Q \ (Q1�…�Qj–1). It should be noted that the
obtained arrangement may be suboptimal rather

1153Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

than optimal, because pairwise interchanges can
lead to a local minimum of |�j – �1/n|, where the
global one is over all possible arrangements.

We now present two algorithms
implementing the above outlined procedure.
They differ in the method of avoiding or leaving
a local minimum of |�j – �1/n|.

Algorithm 1:

For j=1 to n–1 do {
 Initialize Qj and �j ; (see Remark 1)
 Qj* � Qj ; �j* � �j ;
 k � 1 ;
 While TRUE do {
 Select any q’�Qj and q’’�Qj

+ such that
 ; (see Remark 2)
 If such q’ and q’’ exist
 then {
 Qj* � Qj \ { q’} � { q’’} ;
 �j* � �j � q’’/q’ ;
 If j=n–1 and �1*=…=�n–1* =�1/n then stop ;
 }
 else {
 k � k+1 ;
 if k>k_max then break the while-loop ;
 Select any q’�Qj and q’’�Qj

+ ;
 } (see Remark 3)
 Qj � Qj \ { q’} � { q’’} ;
 Qj

+ � Qj
+ \ { q’’} � { q’} ;

 �j � �j � q’’/q’ ;
 } (end of while-loop)
} (end of for-loop)

Remark 1: Qj is initialized with random values
from Q \ (Q1*�…� Qj–1*)

Remark 2: The search for q’ and q’’ satisfying
this inequality stops when the first such pair is
found.

Remark 3: If no pairwise interchange between Qj
and Qj

+ can produce �j closer to �1/n than �j*,
then k is increased before the next cycle of the
while-loop. The set Qj obtained in the current
cycle is the initial Qj for the next cycle. Since the
same Qj may have been obtained in one of the
previous cycles, the algorithm can fall into an
infinite loop. For this reason, k is limited by
k_max. Instead of increasing k and checking if it
reached k_max, the alternative solution it to try

to generate Qj different from all the previous
ones. However, this involves increasingly many
backward comparisons, which affects the
algorithm’s efficiency. The possible workaround
is to try to find Qj such that the respective �j is
not repeated, since searching among previous
values of �j takes less time than searching among
previous sets Qj.

Algorithm 2:

For j=1 to n–1 do {
 Initialize Qj and �j ; (see Remark 1 to Alg. 1)
 Qj* � Qj ; �j* � �j ;
 k � 1 ;
 While k�k_max do {
 Select q’�Qj and q’’�Qj

+ such that
 ;

 (see Remark 1)
 Swap q’ and q’’, and update �j, i.e.
 execute the following operations:
 Qj � Qj \ { q’} � { q’’} ;
 Qj

+ � Qj
+ \ { q’’} � { q’} ;

 �j � �j � q’’/q’;
 If (see Remark 2)
 then {
 Qj* � Qj (Qj is the new candidate for Qj*) ;
 �j* � �j (�j is the new candidate for �j*) ;
 If j=n–1 and �1*=…=�n–1* =�1/n then stop ;
 }
 else
 k � k+1; (see Remark 3 to Alg. 1)
 } (end of while-loop)
} (end of for-loop)

Remark 1: Algorithm 2 can be called “greedy”,
because, unlike in Algorithm 1, each cycle of the
while-loop begins with an attempt to find q’�Qj
and q’’�Qj

+ such that that �j � q’’/q’ is as close as
possible to �1/n.

Remark 2: It can happen that �j computed in the
current cycle of the while-loop is farther from
�1/n than �j* is.

Remark 3: Clearly, the minimum value of
|�j�q2/q1 – �1/n| found in one cycle of the while-
loop is local in the sense that it is a minimum
over pairwise interchanges between Qj and Qj

+.

1154 Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

However, it is possible to get out of this local
minimum in the subsequent cycles of the while-
loop. Obviously, the greater the number of
cycles the closer �j* can be to �1/n.

Remark 4: Since Algorithm 1 choses any q’�Qj
and q’’�Qj

+ satisfying the inequality in the first
command in the while-loop, it examines more
different allocations than Algorithm 2. Thus, it
may seem that the former is likely to find an
allocation ensuring higher system reliability than
the latter, although at the cost of more computing
time. However, the examples presented in the
next section and several others analyzed by the
author suggest that the second algorithm
performs no worse than the first, and finds the
(sub)optimal solution in shorter time.

4. A few illustrating examples.
In all the examples k_max is set to 2.

Example 1
Let us consider a series-parallel system
composed of two 4-element parallel subsystems,
depicted in Fig. 1, which shows the initial
allocation of the components’ failure
probabilities.

Fig. 1. A system composed of two subsystems

It holds that n=2 and �=(0.2�0.3�0.4�0.7)2, hence
�1/n=0.0168. We first apply Algorithm 1 and
present one of its possible realizations.

Cycle 1 of the for-loop:
Q1*= Q1={0.2, 0.2, 0.3, 0.3}
�1*=�1=0.0036, |�1* – �1/2|=0.0132
k=1
Cycle 1 of the while-loop:
q’=0.2, q’’=0.4,
Q1*=Q1= {0.4, 0.2, 0.3, 0.3}
Q1

+={0.2, 0.4, 0.7, 0.7}
�1*=�1=0.0072, |�1* – �1/2|=0.0096
Cycle 2 of the while-loop:
q’=0.2, q’’=0.4
Q1*= Q1={0.4, 0.4, 0.3, 0.3}

Q1
+={0.2, 0.2, 0.7, 0.7}

�1*=�1=0.0144, |�1* – �1/2|=0.0024
Cycle 3 of the while-loop:
�1* cannot be improved
q’=0.4, q’’=0.7
k=2
Q1={0.7, 0.4, 0.3, 0.3}
Q1

+={0.2, 0.2, 0.4, 0.7}
�1=0.0252
Cycle 4 of the while-loop:
q’=0.3, q’’=0.2
Q1*=Q1={0.7, 0.4, 0.2, 0.3}
Q1

+={0.3, 0.2, 0.4, 0.7}
�1*=�1=0.0168, |�1* – �1/2|=0

Since n=2, the for-loop ends after one cycle. The
value of �1* computed in cycle 4 of the while-
loop is equal to �1/2. The algorithm stops at this
point, because, according to Theorem 1,
(1–�1/2)2 = 0.966682 is the highest possible
system reliability. For comparison, the initial
allocation yields the reliability equal to
0.918282. Let us note that it is impossible to
improve �1* in cycle 3, because if
Q1={0.4, 0.4, 0.3, 0.3} then no pairwise
interchange between Q1 and Q1

+ causes
�1 � q’’/q’ to be closer to �1/n than �1.

Example 2
The system and its initial configuration are the
same as in Example 1. We now apply Algorithm
2 that operates as follows:

Cycle 1 of the for-loop:
Q1*= Q1={0.2, 0.2, 0.3, 0.3},
�1*=�1=0.0036, |�1* – �1/2|=0.0132
k=1
Cycle 1 of the while-loop:
q’=0.2, q’’=0.7
Q1*=Q1= {0.7, 0.2, 0.3, 0.3}
Q1

+={0.4, 0.4, 0.2, 0.7}
�1*=�1=0.0126, |�1* – �1/2|=0.0042
Cycle 2 of the while-loop:
q’=0.3, q’’=0.4
Q1*= Q1={0.7, 0.2, 0.4, 0.3}
Q1

+={0.3, 0.4, 0.2, 0.7}
�1*=�1=0.0168, |�1* – �1/2|=0

Now the optimal allocation was found in cycle 2
of the while-loop. It is easy to check that if
Q1={0.4, 0.4, 0.3, 0.3} is the initial allocation for

1155Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

Algorithm 2, then cycles 1 and 2 of the while-
loop yield the same results as cycles 3 and 4 in
Example 1 (as regards cycle 3, see Remark 2 to
Algorithm 2).

Example 3
We now consider a system whose structure and
initial allocation of the failure probabilities are
illustrated in Fig. 2.

Fig. 2. A system composed of three subsystems

It holds that n=3 and �1/n=0.100266. One of
possible realization of Algorithm 1 is presented
below.

Cycle 1 of the for-loop:
Q1*= Q1={0.2, 0.25}
�1*=�1=0.05, |�1* – �1/3|=0.050266
k=1
Cycle 1 of the while-loop:
q’=0.25, q’’=0.4,
Q1*=Q1={0.2, 0.4}
Q1

+={0.25, 0.3, 0.5, 0.6, 0.7, 0.8}
�1*=�1=0.08, |�1* – �1/2|=0.020266
Cycle 2 of the while-loop:
q’=0.4, q’’=0.5,
Q1*=Q1={0.2, 0.5}
Q1

+={0.25, 0.3, 0.4, 0.6, 0.7, 0.8}
�1*=�1=0.1, |�1* – �1/2|=0.000266
Cycle 3 of the while-loop:
�1* cannot be improved
k=2
q’=0.5, q’’=0.6
Q1={0.2, 0.6}
Q1

+={0.25, 0.3, 0.4, 0.5, 0.7, 0.8}
�1=0.12
Cycle 4 of the while-loop:
�1* cannot be improved
k=3
break the while-loop

Cycle 2 of the for-loop:
Q2*=Q2={0.25, 0.3, 0.4}
�2*=�2=0.03, |�2* – �1/3|=0.070266
k=1
Cycle 1 of the while-loop:
q’=0.25, q’’=0.7,

Q2*=Q1={0.7, 0.3, 0.4}
Q2

+={0.25, 0.6, 0.8}
�2*=�2=0.084, |�2* – �1/2|=0.016266
Cycle 2 of the while-loop:
q’=0.7, q’’=0.8,
Q2*=Q2={0.8, 0.3, 0.4}
Q2

+={0.25, 0.6, 0.7}
�2*=�2=0.096, |�2* – �1/2|=0.004266

Cycle 3 of the while-loop:
�2* cannot be improved
k=2
q’=0.3, q’’=0.25
Q2= {0.8, 0.25, 0.4}
Q2

+={0.3, 0.6, 0.7}
�2=0.08
Cycle 4 of the while-loop:
�2* cannot be improved
k=3
break the while-loop

Thus, Q1={0.2, 0.5}, Q2={0.8, 0.3, 0.4},
Q3={0.25, 0.6, 0.7} is the final allocation found
by Algorithm 1. It yields the system reliability
equal to 0.728172. It can be checked that this is
one of two optimal allocations, where the second
is Q1={0.25, 0.4}, Q2={0.3, 0.7, 0.5},
Q3={0.2, 0.6, 0.8}. For comparison, the initial
allocation yields the reliability equal to
0.592952.

Example 4
Now, the subsequent steps of Algorithm 2
applied to the system in Fig. 2 will be
demonstrated.

Cycle 1 of the for-loop:
Q1*= Q1={0.2, 0.25}
�1*=�1=0.05, |�1* – �1/3|=0.050266
k=1
Cycle 1 of the while-loop:
q’=0.2, q’’=0.4,
Q1*=Q1={0.4, 0.25}
Q1

+={0.2, 0.3, 0.5, 0.6, 0.7, 0.8}
�1*=�1=0.1, |�1* – �1/3|=0.000266
Cycle 2 of the while-loop:
q’=0.25, q’’=0.3,
Q1={0.4, 0.3}
Q1

+={0.2, 0.25, 0.5, 0.6, 0.7, 0.8}
�1=0.12, |�1 – �1/3|=0.019734
�1* cannot be improved
k=2

1156 Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

Cycle 3 of the while-loop:
q’=0.3, q’’=0.25
Q1={0.4, 0.25}
Q1

+={0.2, 0.3, 0.5, 0.6, 0.7, 0.8}
�1=0.1, |�1 – �1/3|=0.000266
�1* cannot be improved
k=3
stop the while-loop

Cycle 2 of the for-loop:
Q2*= Q2={0.2, 0.3, 0.5}
�2*=�2=0.03, |�2* – �1/3|=0.070266
k=1
Cycle 1 of the while-loop:
q’=0.2, q’’=0.7,
Q2*=Q2={0.7, 0.3, 0.5}
Q2

+={0.2, 0.6, 0.8}
�2*=�2=0.105, |�2* – �1/3|=0.004734
Cycle 2 of the while-loop:
q’=0.7, q’’=0.8,
Q2={0.8, 0.3, 0.5}
Q2

+={0.2, 0.6, 0.7}
�2=0.12, |�2 – �1/3|=0.019734
�2* cannot be improved
k=2
Cycle 3 of the while-loop:
q’=0.8, q’’=0.7
Q2={0.7, 0.3, 0.5}
Q2

+={0.2, 0.6, 0.8}
�2=0.105, |�2 – �1/3|=0.004734
�2* cannot be improved
k=3
stop the while-loop

Thus, Q1={0.4, 0.25}, Q2={0.7, 0.3, 0.5},
Q3={0.2, 0.6, 0.8} is the final allocation found
by Algorithm 2. It yields the same system
reliability as the allocation found by Algorithm
1. Let us note that the allocations found in cycles
1 and 3 of the while-loop in both iterations of the
for-loop are identical. In consequence, without a
limit on the variable k, Algorithm 2 would fall
into an infinite loop.

5. Concluding remarks
Two algorithms have been presented that find a
suboptimal or optimal arrangement of
components in a series-parallel system. The
components are assumed to be independent and
each component can be placed in any parallel
subsystem. The operation of both algorithms is

analyzed in detail for two small systems.
Although in all four cases it took no more than a
few steps to find optimal allocations, it can
happen that only a suboptimal one will be found
for a more complex system. However, sufficiently
large k_max and appropriate technique of infinite
loop avoidance can be a way to reach an optimal
solution. It can be concluded from the provided
examples that Algorithm 2 is more efficient than
Algorithm 1, although this should be confirmed
by more tests with larger systems. It seems
difficult, if possible at all, to compare the
algorithms’ efficiency by mathematical reasoning.
The presented method, after appropriate
modifications, seems to be applicable to different
variants of optimal allocation problem, mentioned
in the Introduction. This will be the topic of
further research.

References
Bhattacharya, D. and F.J. Samaniego. (2008). “On the

optimal allocation of components within coherent
systems.” Statistics and Probability Letters 78,
938–943.

Boland, P.J., F. Proschan, and Y.L. Tong. (1989).
“Optimal Arrangement of Component via
Pairwise Rearrangements.” Naval Research
Logistics 36, 807-815.

El-Neweihi, E., F. Proschan, and J. Sethuraman.
(1986). “Optimal allocation of components in
parallel–series and series–parallel systems.”
Journal of Applied Probability 23, 770-777.

Fang, L., X. Zhang, and Q. Jin. (2022). ”Optimal
Grouping of Heterogeneous Components in
Series and Parallel Systems Under Archimedean
Copula Dependence.” Joural of Systems Science
and Complexity 35, 1030-1051.

Feizabadi, M. and A.E. Jahromi. (2017). ”A new
model for reliability optimization of series-
parallel systems with non-homogeneous
components.” Reliability Engineering and System
Safety 157, 101-112.

Kuo, W. and M.J. Zuo. (2003). Optimal Reliability
Modeling. Principles and Applications. John
Wiley & Sons.

Lin, F.-H. and W. Kuo. (2002). “Reliability
Importance and Invariant Optimal Allocation.”
Journal of Heuristics 8, 155-171.

Ling, X., Y. Zhang, and Y. Gao. (2021). “Reliability
optimization in series-parallel and parallel-series
systems subject to random shocks.” Proceedings
of the Institution of Mechanical Engineers, Part
O: Journal of Risk and Reliability 235, 998-1008.

Lu, B., J. Zhang, and R. Yang (2023). “Optimal
allocation of a coherent system with statistical
dependent subsystems.” Probability in the

1157Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

Engineering and Informational Sciences 37, 29-
48.

Prasad, V.R. and M. Raghavachari. (1998). “Optimal
Allocation of Interchangeable Components in a
Series-Parallel System.” IEEE Transactions on
Reliability 47, 255-260.

Zhang, H. and Y.-F. Li, (2022). “Approximate method
for redundancy allocation problem in multi-state
series-parallel system.” Safety and Reliability of
Systems and Processes. 16th Summer Safety &
Reliability Seminars - SSARS 2022, 215-224.

Zhang, J., R. Yan, and J. Wang. (2022). “Reliability
optimization of parallel-series and series-parallel
systems with statistically dependent
components.” Applied Mathematical Modelling
102, 618-639.

Yalaoui, A., C. Chu, and E. Chatelet. (2005).
“Reliability allocation problem in a series–
parallel system.” Reliability Engineering and
System Safety 90, 55-61.

