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A method of optimizing the allocation of two-state independent components in a series-parallel structure is 
presented. Such a structure is composed of parallel substructures arranged in series and is considered operable if at 
least one component in each substructure is operable. The components are assumed to have different failure 
probabilities, so the system reliability depends on where they are located in the structure. The optimal allocation 
minimizes the system failure probability or, alternatively, maximizes its reliability. Interestingly enough, while the 
optimal components allocation problem for a parallel-series structure (i.e. series substructures arranged in parallel) 
has a well-known simple solution, the same does not hold for a series-parallel one. The considered problem has 
been investigated by several researchers who proposed quite elaborate solutions. This paper presents a recently 
developed, simple and efficient procedure finding a nearly optimal allocation, and sometimes the optimal one. The 
presented approach is based on a theorem specifying a threshold value that cannot be exceeded by a series-parallel 
system’s reliability. Starting from some random allocation and using pairwise interchanges of components 
between the parallel substructures, the algorithm finds successive allocations that yield system reliabilities 
oscillating towards the value specified by the above theorem. In this way a suboptimal (or, many a time, optimal) 
allocation is obtained. An important feature is that the method’s accuracy is expressed by the easy-to-compute 
upper bound of the difference between the optimal reliability and the obtained suboptimal value. The performed 
tests show that the method allows to find a (sub)optimal solution in a relatively small number of steps. Illustrative 
examples are given that demonstrate the method’s modus operandi. 
 
Keywords: Series-parallel structure, reliability, components independence, pairwise interchange, 
optimal/suboptimal components allocation. 
 
 

1. Introduction 
This paper studies the problem of optimal 
components allocation in a series-parallel 
reliability structure. Such a system is usually 
represented as a block diagram composed of 
serially arranged substructures, each of which 
consists of components arranged in parallel. All 
the components are assumed to be binary (either 
operable or failed) and independent (each 
component fails with a probability independent 
of the states of the remaining ones). The author 
presents a fast, nearly optimal method of 
allocating components with different failure 
probabilities to individual subsystems with the 
purpose of maximizing the system’s reliability. 
Interestingly enough, while the optimal 
components allocation problem for a parallel-
series system (i.e., composed of series 
subsystems arranged in parallel) has a well-
known simple solution (see El Neweihi et al. 

(1986)), this is not the case with a series-parallel 
one. 

The optimal allocation problem in 
reliability theory has been investigated by a 
number of researchers who proposed quite 
elaborate methods of its solution. Different 
approaches to optimizing not only series-
parallel, but coherent systems in general, can be 
found in older papers, e.g. Boland et al. (1989), 
Bhattacharya and Samaniego (2008),  Prasad and 
Raghavachari (1998), Lin and Kuo (2002), 
Yalaoui et al. (2005). Over the years, the 
considered problem has evolved into several 
variants. Many authors study the redundancy 
allocation problem for a series-parallel system 
(see Feizabadi and Jahromi (2017) and Zhang 
and Li (2022), where the problem definition and 
comprehensive literature surveys can be found). 
In a few papers, e.g. Fang et al. (2022), Zhang et 
al. (2022) or Lu et al. (2023), it is assumed that 
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the components are mutually dependent. Other 
authors, e.g. Yalaoui et al. (2005), assume that 
certain cost is involved in placing a component 
in a particular location in the reliability structure 
and attempt to find the allocation ensuring the 
minimal total cost. The issue of optimal 
components arrangement is also analyzed in the 
context of shock models. See Ling at al. (2021) 
for recent results and relevant bibliography. 

In the current paper, it is assumed that 
independent components with given failure 
probabilities can be placed in arbitrary locations 
in a series-parallel structure. Two algorithms are 
presented that, starting from a random initial 
allocation and using pairwise interchanges of 
components between the parallel substructures, 
find the (sub)optimal allocation that (nearly) 
maximizes the system reliability. The difference 
between the optimal and suboptimal reliabilities 
can be estimated using the author’s theorem that 
gives an upper bound on the optimal value. The 
operation of the algorithms is illustrated with 
several simple examples. 

 The optimization problem considered in 
this paper was earlier addressed in Kuo and Zuo 
(2003), where the system reliability was also 
improved by using pairwise interchanges, but no 
estimate of the difference between the optimal 
and suboptimal reliability was given, and the 
components interchange procedure proposed 
herein is likely more efficient. 

2. Notation and the main theorem  
The following notation will be used in the paper: 
n – the number of parallel subsystems in the 

considered series-parallel system 
mj – the number of components in the j-th 

subsystem, j=1,…,n 
qij – the failure probability of the i-th component 

in the j-th subsystem 
Qj – the set of failure probabilities of the 

components in the j-th subsystem, i.e. 
Qj={qij, i=1,…,mj} 

Q – the set of failure probabilities of all the 
system’s components, i.e. Q=Q1�…�Qn  

�j – the product of all failure probabilities in Qj, 
i.e.  

� – the product of all failure probabilities in Q, 
i.e. �  

R – the system reliability, i.e. 
  

We also set 
  

 
Theorem 1 
Let the components of a series-parallel system 
have arbitrary failure probabilities such that their 
product is equal to �, where 0<�<1, i.e. 

   (1) 

Then, the system reliability is maximized when 
the failure probability of each parallel subsystem 
is equal to �1/n, i.e. 

    (2) 

Hence, the maximum system reliability amounts 
to [1 – �1/n]n . 
 
Proof: The detailed proof will appear in the 
extended version of this paper, being prepared 
for publication. 
 
Note that Eq. (2) holds if, for instance, the 
failure probability of each component in the j-th 
subsystem is equal to � to the power of 1/mj�n. 
Also note that Theorem 1 assumes that the 
failure probabilities can take arbitrary values, 
provided that their product is equal to �, whereas 
the components of the considered system have 
fixed failure probabilities. 

3. Two algorithms for optimizing the system 
reliability 

It follows from Theorem 1 that the system 
reliability reaches its maximum if the 
components are arranged in such a way that the 
failure probabilities of the individual parallel 
subsystems are as close as possible to �1/n. Such 
an arrangement can be obtained by composing 
the set Q1 of those failure probabilities from Q 
that minimize |�1 – �1/n|, then composing the set 
Q2 of those failure probabilities from Q \Q1 that 
minimize |�2 – �1/n|, etc. The final arrangement is 
thus a result of a (n–1)-step procedure, where Qj 
is composed of those failure probabilities from 
Q \ (Q1�…�Qj–1) that minimize |�j – �1/n|. We 
assume that Q1�…�Qj–1=� for j=1. The 
probabilities composing Qj are selected by 
means of pairwise interchanges between Qj and 
Q \ (Q1�…�Qj–1). It should be noted that the 
obtained arrangement may be suboptimal rather 
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than optimal, because pairwise interchanges can 
lead to a local minimum of |�j – �1/n|, where the 
global one is over all possible arrangements. 

We now present two algorithms 
implementing the above outlined procedure. 
They differ in the method of avoiding or leaving 
a local minimum of |�j – �1/n|. 

 
Algorithm 1: 
 
For j=1 to n–1 do { 
  Initialize Qj and �j ; (see Remark 1) 
  Qj* � Qj ; �j* � �j ;  
  k � 1 ; 
  While TRUE do { 
    Select any q’�Qj and q’’�Qj

+  such that 
       ; (see Remark 2) 
    If such q’ and q’’ exist  
    then { 
      Qj* � Qj \ { q’} � { q’’} ; 
      �j* � �j � q’’/q’ ; 
      If j=n–1 and �1*=…=�n–1* =�1/n then stop ; 
    } 
    else { 
      k � k+1 ; 
      if k>k_max then break the while-loop ; 
      Select any q’�Qj and q’’�Qj

+ ; 
    } (see Remark 3) 
    Qj � Qj \ { q’} � { q’’} ; 
    Qj

+ � Qj
+ \ { q’’} � { q’} ; 

    �j � �j � q’’/q’ ; 
  } (end of while-loop) 
} (end of for-loop) 
   
Remark 1: Qj is initialized with random values 
from Q \ (Q1*�…� Qj–1*) 
 
Remark 2: The search for q’ and q’’ satisfying 
this inequality stops when the first such pair is 
found. 
 
Remark 3: If no pairwise interchange between Qj 
and Qj

+ can produce �j closer to �1/n than �j*, 
then k is increased before the next cycle of the 
while-loop. The set Qj obtained in the current 
cycle is the initial Qj for the next cycle. Since the 
same Qj may have been obtained in one of the 
previous cycles, the algorithm can fall into an 
infinite loop. For this reason, k is limited by 
k_max. Instead of increasing k and checking if it 
reached k_max, the alternative solution it to try 

to generate Qj different from all the previous 
ones. However, this involves increasingly many 
backward comparisons, which affects the 
algorithm’s efficiency. The possible workaround 
is to try to find Qj such that the respective �j is 
not repeated, since searching among previous 
values of �j takes less time than searching among 
previous sets Qj. 
 
Algorithm 2: 
 
For j=1 to n–1 do { 
  Initialize Qj and �j ; (see Remark 1 to Alg. 1) 
  Qj* � Qj ; �j* � �j ;  
  k � 1 ; 
  While k�k_max do { 
    Select q’�Qj and q’’�Qj

+  such that 
       ; 

      (see Remark 1) 
    Swap q’ and q’’, and update �j, i.e.  
    execute the following operations: 
    Qj � Qj \ { q’} � { q’’} ; 
    Qj

+ � Qj
+ \ { q’’} � { q’} ; 

    �j � �j � q’’/q’; 
    If  (see Remark 2) 
    then { 
      Qj* � Qj  (Qj is the new candidate for Qj*) ; 
      �j* � �j  (�j is the new candidate for �j*) ; 
      If j=n–1 and �1*=…=�n–1* =�1/n then stop ; 
    } 
    else  
      k � k+1; (see Remark 3 to Alg. 1) 
  } (end of while-loop) 
} (end of for-loop) 
  
Remark 1: Algorithm 2 can be called “greedy”, 
because, unlike in Algorithm 1, each cycle of the 
while-loop begins with an attempt to find q’�Qj 
and q’’�Qj

+ such that that �j � q’’/q’ is as close as 
possible to �1/n. 
 
Remark 2: It can happen that �j computed in the 
current cycle of the while-loop is farther from 
�1/n than �j* is. 
 
Remark 3: Clearly, the minimum value of 
|�j�q2/q1 – �1/n| found in one cycle of the while-
loop is local in the sense that it is a minimum 
over pairwise interchanges between Qj and Qj

+. 
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However, it is possible to get out of this local 
minimum in the subsequent cycles of the while-
loop. Obviously, the greater the number of 
cycles the closer �j* can be to �1/n. 
 
Remark 4: Since Algorithm 1 choses any q’�Qj 
and q’’�Qj

+ satisfying the inequality in the first 
command in the while-loop, it examines more 
different allocations than Algorithm 2. Thus, it 
may seem that the former is likely to find an 
allocation ensuring higher system reliability than 
the latter, although at the cost of more computing 
time. However, the examples presented in the 
next section and several others analyzed by the 
author suggest that the second algorithm 
performs no worse than the first, and finds the 
(sub)optimal solution in shorter time. 

4. A few illustrating examples. 
In all the examples k_max is set to 2. 
 
Example 1 
Let us consider a series-parallel system 
composed of two 4-element parallel subsystems, 
depicted in Fig. 1, which shows the initial 
allocation of the components’ failure 
probabilities. 
 

 

 
Fig. 1. A system composed of two subsystems 

 
It holds that n=2 and �=(0.2�0.3�0.4�0.7)2, hence 
�1/n=0.0168. We first apply Algorithm 1 and 
present one of its possible realizations.  
 
Cycle 1 of the for-loop: 
Q1*= Q1={0.2, 0.2, 0.3, 0.3} 
�1*=�1=0.0036, |�1* – �1/2|=0.0132 
k=1 
Cycle 1 of the while-loop: 
q’=0.2, q’’=0.4, 
Q1*=Q1= {0.4, 0.2, 0.3, 0.3} 
Q1

+={0.2, 0.4, 0.7, 0.7} 
�1*=�1=0.0072, |�1* – �1/2|=0.0096 
Cycle 2 of the while-loop: 
q’=0.2, q’’=0.4 
Q1*= Q1={0.4, 0.4, 0.3, 0.3} 

Q1
+={0.2, 0.2, 0.7, 0.7} 

�1*=�1=0.0144, |�1* – �1/2|=0.0024 
Cycle 3 of the while-loop: 
�1* cannot be improved 
q’=0.4, q’’=0.7 
k=2 
Q1={0.7, 0.4, 0.3, 0.3} 
Q1

+={0.2, 0.2, 0.4, 0.7} 
�1=0.0252 
Cycle 4 of the while-loop: 
q’=0.3, q’’=0.2 
Q1*=Q1={0.7, 0.4, 0.2, 0.3} 
Q1

+={0.3, 0.2, 0.4, 0.7} 
�1*=�1=0.0168, |�1* – �1/2|=0 
 
Since n=2, the for-loop ends after one cycle. The 
value of �1* computed in cycle 4 of the while-
loop is equal to �1/2. The algorithm stops at this 
point, because, according to Theorem 1,   
(1–�1/2)2 = 0.966682 is the highest possible 
system reliability. For comparison, the initial 
allocation yields the reliability equal to 
0.918282. Let us note that it is impossible to 
improve �1* in cycle 3, because if 
Q1={0.4, 0.4, 0.3, 0.3} then no pairwise 
interchange between Q1 and Q1

+ causes 
�1 � q’’/q’ to be closer to �1/n than �1.  
 
Example 2 
The system and its initial configuration are the 
same as in Example 1. We now apply Algorithm 
2 that operates as follows: 
 
Cycle 1 of the for-loop: 
Q1*= Q1={0.2, 0.2, 0.3, 0.3}, 
�1*=�1=0.0036, |�1* – �1/2|=0.0132 
k=1 
Cycle 1 of the while-loop: 
q’=0.2, q’’=0.7 
Q1*=Q1= {0.7, 0.2, 0.3, 0.3} 
Q1

+={0.4, 0.4, 0.2, 0.7} 
�1*=�1=0.0126, |�1* – �1/2|=0.0042 
Cycle 2 of the while-loop: 
q’=0.3, q’’=0.4 
Q1*= Q1={0.7, 0.2, 0.4, 0.3} 
Q1

+={0.3, 0.4, 0.2, 0.7} 
�1*=�1=0.0168, |�1* – �1/2|=0 
 
Now the optimal allocation was found in cycle 2 
of the while-loop. It is easy to check that if 
Q1={0.4, 0.4, 0.3, 0.3} is the initial allocation for 



1155Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

Algorithm 2, then cycles 1 and 2 of the while-
loop yield the same results as cycles 3 and 4 in 
Example 1 (as regards cycle 3, see Remark 2 to 
Algorithm 2). 
 
Example 3 
We now consider a system whose structure and 
initial allocation of the failure probabilities are 
illustrated in Fig. 2. 
 

 

 
Fig. 2. A system composed of three subsystems 

 
It holds that n=3 and �1/n=0.100266. One of 
possible realization of Algorithm 1 is presented 
below. 
 
Cycle 1 of the for-loop: 
Q1*= Q1={0.2, 0.25} 
�1*=�1=0.05, |�1* – �1/3|=0.050266 
k=1 
Cycle 1 of the while-loop: 
q’=0.25, q’’=0.4, 
Q1*=Q1={0.2, 0.4} 
Q1

+={0.25, 0.3, 0.5, 0.6, 0.7, 0.8} 
�1*=�1=0.08, |�1* – �1/2|=0.020266 
Cycle 2 of the while-loop: 
q’=0.4, q’’=0.5, 
Q1*=Q1={0.2, 0.5} 
Q1

+={0.25, 0.3, 0.4, 0.6, 0.7, 0.8} 
�1*=�1=0.1, |�1* – �1/2|=0.000266 
Cycle 3 of the while-loop: 
�1* cannot be improved 
k=2 
q’=0.5, q’’=0.6 
Q1={0.2, 0.6} 
Q1

+={0.25, 0.3, 0.4, 0.5, 0.7, 0.8} 
�1=0.12 
Cycle 4 of the while-loop: 
�1* cannot be improved 
k=3 
break the while-loop 
 
Cycle 2 of the for-loop: 
Q2*=Q2={0.25, 0.3, 0.4} 
�2*=�2=0.03, |�2* – �1/3|=0.070266 
k=1 
Cycle 1 of the while-loop: 
q’=0.25, q’’=0.7, 

Q2*=Q1={0.7, 0.3, 0.4} 
Q2

+={0.25, 0.6, 0.8} 
�2*=�2=0.084, |�2* – �1/2|=0.016266 
Cycle 2 of the while-loop: 
q’=0.7, q’’=0.8, 
Q2*=Q2={0.8, 0.3, 0.4} 
Q2

+={0.25, 0.6, 0.7} 
�2*=�2=0.096, |�2* – �1/2|=0.004266 
 
Cycle 3 of the while-loop: 
�2* cannot be improved 
k=2 
q’=0.3, q’’=0.25 
Q2= {0.8, 0.25, 0.4} 
Q2

+={0.3, 0.6, 0.7} 
�2=0.08 
Cycle 4 of the while-loop: 
�2* cannot be improved 
k=3 
break the while-loop 
 
Thus, Q1={0.2, 0.5}, Q2={0.8, 0.3, 0.4}, 
Q3={0.25, 0.6, 0.7} is the final allocation found 
by Algorithm 1. It yields the system reliability  
equal to 0.728172. It can be checked that this is 
one of two optimal allocations, where the second 
is Q1={0.25, 0.4}, Q2={0.3, 0.7, 0.5}, 
Q3={0.2, 0.6, 0.8}. For comparison, the initial 
allocation yields the reliability equal to 
0.592952. 
 
Example 4 
Now, the subsequent steps of Algorithm 2 
applied to the system in Fig. 2 will be 
demonstrated. 
 
Cycle 1 of the for-loop: 
Q1*= Q1={0.2, 0.25} 
�1*=�1=0.05, |�1* – �1/3|=0.050266 
k=1 
Cycle 1 of the while-loop: 
q’=0.2, q’’=0.4, 
Q1*=Q1={0.4, 0.25} 
Q1

+={0.2, 0.3, 0.5, 0.6, 0.7, 0.8} 
�1*=�1=0.1, |�1* – �1/3|=0.000266 
Cycle 2 of the while-loop: 
q’=0.25, q’’=0.3, 
Q1={0.4, 0.3} 
Q1

+={0.2, 0.25, 0.5, 0.6, 0.7, 0.8} 
�1=0.12, |�1 – �1/3|=0.019734 
�1* cannot be improved 
k=2 
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Cycle 3 of the while-loop: 
q’=0.3, q’’=0.25 
Q1={0.4, 0.25} 
Q1

+={0.2, 0.3, 0.5, 0.6, 0.7, 0.8} 
�1=0.1, |�1 – �1/3|=0.000266 
�1* cannot be improved 
k=3 
stop the while-loop 
 
Cycle 2 of the for-loop: 
Q2*= Q2={0.2, 0.3, 0.5} 
�2*=�2=0.03, |�2* – �1/3|=0.070266 
k=1 
Cycle 1 of the while-loop: 
q’=0.2, q’’=0.7, 
Q2*=Q2={0.7, 0.3, 0.5} 
Q2

+={0.2, 0.6, 0.8} 
�2*=�2=0.105, |�2* – �1/3|=0.004734 
Cycle 2 of the while-loop: 
q’=0.7, q’’=0.8, 
Q2={0.8, 0.3, 0.5} 
Q2

+={0.2, 0.6, 0.7} 
�2=0.12, |�2 – �1/3|=0.019734 
�2* cannot be improved 
k=2 
Cycle 3 of the while-loop: 
q’=0.8, q’’=0.7 
Q2={0.7, 0.3, 0.5} 
Q2

+={0.2, 0.6, 0.8} 
�2=0.105, |�2 – �1/3|=0.004734 
�2* cannot be improved 
k=3 
stop the while-loop 
 
Thus, Q1={0.4, 0.25}, Q2={0.7, 0.3, 0.5}, 
Q3={0.2, 0.6, 0.8} is the final allocation found 
by Algorithm 2. It yields the same system 
reliability as the allocation found by Algorithm 
1. Let us note that the allocations found in cycles 
1 and 3 of the while-loop in both iterations of the 
for-loop are identical. In consequence, without a 
limit on the variable k, Algorithm 2 would fall 
into an infinite loop. 

5. Concluding remarks 
Two algorithms have been presented that find a 
suboptimal or optimal arrangement of 
components in a series-parallel system. The 
components are assumed to be independent and 
each component can be placed in any parallel 
subsystem. The operation of both algorithms is 

analyzed in detail for two small systems. 
Although in all four cases it took no more than a 
few steps to find optimal allocations, it can 
happen that only a suboptimal one will be found 
for a more complex system. However, sufficiently 
large k_max and appropriate technique of infinite 
loop avoidance can be a way to reach an optimal 
solution. It can be concluded from the provided 
examples that Algorithm 2 is more efficient than 
Algorithm 1, although this should be confirmed 
by more tests with larger systems. It seems 
difficult, if possible at all, to compare the 
algorithms’ efficiency by mathematical reasoning. 
The presented method, after appropriate 
modifications, seems to be applicable to different 
variants of optimal allocation problem, mentioned 
in the Introduction. This will be the topic of 
further research.  
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