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Passive Safety Systems (PSSs), which rely on natural forces and processes, such as natural circulation, gravity, internal stored energy, etc., are 
increasingly utilized in generation 3+ and generation 4 advanced nuclear power plants to increase inherent safety features of the nuclear reactor design. 
Although PSSs should considerably increase the safety of nuclear power plants, it is still challenging to systematically assess the reliability of passive 
systems because of the lack of data and uncertainties associated with phenomenon involving natural forces that underlies their safety functions. In 
this study, the Fault Tree Analysis (FTA) was used to assess the reliability and safety of the Passive Containment Cooling System (PCCS) in Advanced 
Heavy Water Reactor (AHWR). The failure probability of PCCS was calculated from the failure probabilities of Basic Events (BEs). Using the data 
for the failure probabilities of Top Event (TE) and BE from the FTA model, two Artificial Neural Network (ANN) models were proposed for the 
reliability analysis of PCCS to supplement the FTA model. Rectified Linear Unit (ReLU) and Sigmoid activation functions were utilized to build 
ANN models, and an Adaptive moment estimation (Adam) optimizer was used to train the ANN models to make these models computationally 
efficient. The results of the FTA model were compared with the predictions of the ANN models to find out the ANN model performance. 
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1. Introduction 
Passive Safety Systems (PSSs) received a renewal of interest 
following the significant nuclear accidents at Three Mile Island 
(1979), Chernobyl (1986), and Fukushima (2011). A PSS is a 
type of safety system used in nuclear power plants that relies on 
natural forces and processes, such as natural circulation, internal 
stored energy, gravity, etc., without the need for active 
intervention or control, to maintain the safety of the plant 
(Solanki et al. 2020). The goal of PSSs is to provide a high level 
of safety and security in the event of a Loss-of-Coolant Accident 
(LOCA) or other emergency situations by relying on inherent 
design features and the behavior of materials rather than relying 
on active control systems or human intervention. PSSs are 
typically designed to provide a large margin of safety and to be 
highly reliable and resistant to failure in order to ensure that a 
nuclear power plant remains safe even in the most severe 
accidents or emergencies (Bae et al. 2021). They offer advantages 
over active systems, such as reduced dependence on external 
energy sources, no requirement for operator intervention to 
activate them, and lower costs, including easier maintenance (J. 
Lee et al. 2023). Despite the fact that PSSs play a vital role in the 
safety of nuclear power plants, assessing their reliability can be 
challenging due to insufficient data and a limited understanding 
of the underlying safety functions of the natural driving forces 
(Jin et al. 2022).  

The application of the Probabilistic Safety Assessment 
(PSA) methodology to advanced reactor designs has proven 
useful in demonstrating their safety and identifying potential 
vulnerabilities. This approach allows for the evaluation of 
alternative design features and potential improvements to the 
original design (Iwamura, Araya, and Murao 2012). The PSA 
results may suggest or recommend the replacement of 
components with more reliable ones. However, there are 

technical challenges in applying PSA to evaluate nuclear power 
plants (NPPs) due to insufficient empirical data, diverse failure 
scenarios, and different phenomenology. These difficulties can 
influence decisions regarding plant safety levels and defense-in-
depth evaluations. A crucial aspect of PSA is the appropriate 
handling of uncertainties associated with data utilized for 
quantitative analysis, which must be adequately represented, 
propagated, and interpreted (Y. H. Lee, Jang, and Lee 2011). 

A typical PSA model comprises of interlinked Fault Tree 
(FT) and Event Tree (ET) models, represented in Boolean logics 
(Khakzad, Khan, and Amyotte 2013). The FT models system 
failures, which may result from different combinations of 
component failures, in parallel or sequentially. ETs are used to 
evaluate the likelihood of specific outcomes based on a sequence 
of events or scenarios. They typically start with a specific 
initiating event, and the branches represent the possible 
subsequent events and their probabilities. In the PSA model, ET 
headings are typically linked to individual FTs with mitigating 
systems of ET. By utilizing Fault Tree Analysis (FTA), it 
becomes possible to evaluate the failure probability of each 
mitigating system connected to the ET heading, thereby 
providing a quantitative estimation of the overall probability of 
the Top Event (TE) (Purba et al. 2020). To reduce the 
computational time of FTA, the Artificial Neural Network 
(ANN) model can be used (Bolbot, Gkerekos, and Theotokatos 
2021). 

An ANN is a computational model inspired by the structure 
and function of the human brain, used for pattern recognition, 
classification, and prediction tasks (Agatonovic-Kustrin and 
Beresford 2000). ANNs are a type of self-learning models that 
can be effectively employed to represent complex systems, 
particularly when the underlying relationships between input and 
output data are not fully understood, and can identify and learn 
correlations between inputs and target values (Solanki et al. 

1500



1501Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

2020). In reliability and safety assessment, they can be used to 
predict the failure probability of a component or system. They 
can also be used to perform sensitivity analysis, which can assist 
in detecting the most critical parameters affecting reliability. 
They can be trained using historical data, such as maintenance 
records, and can also incorporate expert knowledge (Sarker 
2021). They can manage large amounts of data and can model 
complex, non-linear relationships between variables.  

In this paper, the FTA was used to assess the reliability and 
safety of the Passive Containment Cooling System (PCCS) in 
Advanced Heavy Water Reactor (AHWR). After that, using 
failure probability data obtained from the FTA model, two ANN 
models are proposed for the reliability analysis of PCCS. The 
number of hidden layers and nodes per hidden layer for the ANN 
model was selected by hyperparameter tuning technique, and 
activation functions, Rectified Linear Unit (ReLU) and Sigmoid 
were utilized to build ANN models. An adaptive moment 
estimation (Adam) optimizer was utilized for training the ANN 
models to make the model computationally efficient. Finally, the 
results of FTA were compared with the predictions of the ANN 
models to find out ANN model performance. 

2. Passive Containment Cooling System (PCCS) and Failure 
Probabilities of its Components  

In the event of a severe accident, the nuclear reactor containment 
system serves as the top defense against the release of radioactive 
fission products into the environment. To maintain containment 
integrity during such an event, either energy management features 
that can act as long-term heat sinks or pressure relief systems like 
the containment filtered venting system are provided. Fig. 1 
illustrates a schematic diagram of the containment system in 
AHWR (Kumar et al. 2014). Many generation 3+ and generation 
4 advanced nuclear reactors utilize PCCS to safeguard the 
containment during severe accidents. The primary goal of PCCS is 
to keep the pressure of the primary containment below the design 
limit without the requirement for operator intervention and to 
maintain its integrity in the event that active containment cooling 
is not feasible or available during an accident scenario 
(Adinarayana and Ali 2021). 

 
Fig. 1. Schematic diagram of containment system in AHWR (Kumar et 
al. 2014). 

To control the pressure of primary containment after a LOCA 
and consequently maintain the containment integrity, the PCCS is 

used to attain post-accident primary containment cooling through 
the natural circulation. Main Heat Transport System (MHTS) and 
reactor core are enclosed in the high enthalpy zone of the Primary 
Containment, while the remaining primary containment is 
surrounded by the low enthalpy zone. Gravity Driven Water Pool 
(GDWP), a spherical water tank serving as the suppression pool, is 
part of the low enthalpy zone. Maintaining the GDWP water level 
is essential to ensure adequate submergence of the vent shafts in 
the pool, enabling sufficient suppression in the initial stages after 
an accident. Increasing water temperature reduces the suppression 
capability of the GDWP, resulting in reduced energy absorption 
and higher containment pressure (Kumar et al. 2014). 

Passive systems typically fail to function properly not 
because of problems with their driving mechanism but because of 
deviations in critical parameters. These deviations can be caused 
by the failure of active components, such as valves, pumps, and 
electric signals, or passive components, such as passive valves and 
relief valves. If The PCCS fails to keep the system operating within 
design limits, it may be due to intermediate events such as the high 
water temperature of the GDWP or low water level in the GDWP. 
FT was developed for each case until the root cause, or Basic Event 
(BE), was identified. High water temperature in the GDWP can be 
caused by failures in the header to pool valves, recirculation loop, 
and pool to header valves to remain open. The recirculation loop 
can fail if at least three or more of the four recirculation loops 
failure occur. The low water level in the GDWP can be caused by 
failure in the header to pool valves and failure in the make up 
circuit (Kumar et al. 2014). 

The components that were identified as BEs for the failure of 
PCCS have their failure probabilities obtained from plant operating 
experience data and generic data (IAEA 1988; Kumar et al. 2014), 
as depicted in Table 1. The failure probability of these components 
was used to evaluate the reliability and safety assessment of PCCS. 

Table 1. Failure probabilities of Basic Events (BEs) for the failure of 
PCCS. 

Basic Events Failure Probability 
Valve 1 fails to remain open (pump loop 1) 1.0×10-4 
Valve 2 fails to remain open (pump loop 1) 1.0×10-4 
Pump failure (pump loop 1) 3.2×10-2 
Check valve fails to function (pump loop 2) 1.0×10-4 
Valve 1 fails to remain open (pump loop 2) 1.0×10-4 
Valve 2 fails to remain open (pump loop 2) 1.0×10-4 
Pump failure (pump loop 2) 3.2×10-2 
Check valve fails to function (pump loop 2) 1.0×10-4 
Recirculation loop 1-4 failure 3.3×10-2 
GWDP pool to GDWP header valve 1-8 
fails to remain open 1.0×10-4 

Header to pool valve failure 1.0×10-5 
Valve fails to remain open 1.0×10-4 
Maintenance valves fails to remain close 8.0×10-4 

3. Methodology 
In this paper, we built a FT to identify the failure probability of 
the TE using the failure probabilities of the BEs. Assuming 10% 
standard deviations (SD) associated with BEs, 2000 data points 
of failure probability for every BE were generated. Using these 
failure probabilities of BE, we calculated the corresponding 
failure probability of TE. Afterward, we trained two ANN 
models using the failure probability of BE and TE for different 
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activation functions, ReLU and Sigmoid and validated the ANN 
models. Once the ANN model was validated, we used it to predict 
the failure probability of TE and compared it with the results from 
FTA. By doing so, we determined the effectiveness of using the 
ANN model for predicting the failure probability of TE compared 
to FTA. Fig. 2 represents the methodology of this work. 

 
Fig. 2. Methodology overview. 

4. Fault Tree Analysis (FTA) 
A FT is a diagram that shows all possible events leading to 
system failure, their logical combinations, and how they relate to 
each other (Hong, Lee, and Cheng 2006).  FTA is a commonly 

used tool for PSA in nuclear power plants, but it requires 
quantitative failure rates or probabilities for all BEs in the system 
FT (Purba 2014). The application of this technique involves the 
identification and classification of hazards, as well as the 
estimation of the probability of an undesired failure or accident, 
referred to as a TE. BEs are the components and subsystems that 
trigger the occurrence of a TE (Ferdous et al. 2007). In this study, 
AND, OR, and Voting gates were employed to construct the FT. 
An OR gate is used when only one event is required, but an AND 
gate requires each input event must occur in order for the output 
event to occur. A Voting gate (i/n gate or i-out-of-n gate) is a gate 
with n input events, where the output event is triggered if i or 
more of the input events occur (Xiang et al. 2011). Eq. (1), Eq. 
(2), and Eq. (3) show the mathematical formula to calculate the 
failure probability using AND, OR and Voting gate, respectively. 

  (1) 

  (2) 

  (3) 

Fig. 3 shows the FT for the failure of PCCS and that FT was 
built using CAFTA 5.3 Educational version software. Voting 
gates were used to calculate the intermediate event, recirculation 
loop (3/4) failure, and pool to header valves (2/8) fail to open.

 

Fig. 3. Fault tree for the failure of PCCS. 
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5. Artificial Neural Network (ANN) Models 
The fundamental structure of an ANN comprises nodes and 
connections that interconnect them. Each node and connection 
have associated weight and bias properties, respectively, which 
constitute the primary mechanism for information storage in a 
network. To approximate complex entities, a neural network 
must undergo training for a specific problem by adjusting these 
weights and biases. The feedforward multi-layer Perceptron 
(MLP) is a widely used network type for approximation, which 
is trained using the back-propagation algorithm (Vazirizade, 
Nozhati, and Zadeh 2017). In this study, we employed the 
schematic network type illustrated in Fig. 4, which comprises an 
input layer, two hidden layers, and an output layer. Each ANN 
model consists of an input layer with thirteen neurons for input 
data of failure probabilities of BEs and an output layer with one 
neuron for output data of failure probability of TE. There are two 
hidden layers; layer-1 contains eight neurons, and layer-2 
contains two neurons, as shown in Fig. 4. The best number of 
hidden layers and neurons per hidden layer for the ANN models 
was chosen using the hyperparameter tuning technique. 

 
Fig. 4. Structure of proposed ANN model. 

Two ANN models were constructed using ReLU and 
Sigmoid activation functions. The mathematical expressions of 
these functions are represented by Eq. (4) and Eq. (5), 
respectively. To ensure computational efficiency, the Adam 
optimizer was used to train the models. The models were trained 
on 70% of the data (1,400 data points), while 20% of the data 
(400 data points) was utilized for model validation, and 10% of 
the data (200 data points) was reserved for evaluating the model 
performance. 

  (4) 

  (5) 

6. Results and Discussions 
The predicted failure probability of the TE for the ANN model 
using the ReLU activation function and the actual failure 
probability of TE for the test set data points are shown in Fig. 5. 

Fig. 5(a) displays all 200 test data points, while Fig. 5(b) presents 
only 30 test data points for better visualization. 

 

 
(a) 

 
(b) 

Fig. 5. Comparison between actual test set data and predicted data of 
ANN model using ReLU activation function.  

Fig. 6 depicts the predicted and actual failure probabilities 
of TE for the test set data points using the Sigmoid activation 
function. Fig. 6(a) shows all 200 test data points, while Fig. 6(b) 
presents a closer look at only 30 test data points. 

 
(a) 
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(b) 

Fig. 6. Comparison between actual test set data and predicted data of 
ANN model using Sigmoid activation function.  

In terms of Mean Absolute Error (MSE), Fig. 7 illustrates 
the performance of each ANN model. The Sigmoid-trained 
model has an MSE value that is approximately 66% lower than 
the ReLU-trained model. 

From Fig. 5, Fig. 6 and Fig. 7, it was observed that the ANN 
model trained using the Sigmoid activation function performed 
better than the model trained using the ReLU activation function 
for this work. However, the ANN model with the Sigmoid 
activation function requires more computational time than the 
one with the ReLU activation function. Although there may be 
no significant difference in computational time for small ANN 
models, it could be a crucial factor for more complex models. 

 
Fig. 7. Comparison of ANN models in terms of Mean Square Error 
(MSE).  

7. Conclusions 
This paper demonstrates that the ANN model as a supplement of 
FTA model can be used to evaluate the reliability and safety 
assessment of a system. However, there still exists very small 
errors between the actual and predicted data of the failure 
probability of TE. For small FT, there will be no significant 
difference between the computational time of ANN and FTA 
model. For FT with large number of basic events and dependent 
events, the ANN model can be more computationally efficient 
than the FTA model. In future work, a more developed ANN 
model could be built to maximize the robustness and efficiency 
of the model, and incorporate the time dependency of the events 
in the model.  
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