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In today’s world, aging and worn bridges pose an increasing risk to transportation infrastructure. In the worst case,
old, poorly maintained bridges can collapse at any time. But complex and expensive maintenance work on the
bridges causes traffic jams, which can lead to accidents or delivery problems. Therefore, bridges require intelligent
and individual maintenance, which leads to a higher demand for documentation. One way to facilitate documentation
is Building Information Modeling (BIM), which is based on a 3D model of the construction. For most of the German
bridges no 3D data is available. So, it is necessary to create a 3D model as a base for the BIM by Scan-to-BIM
processes. The 3D data for this process can come from a wide variety of sources like laser scanning, photogrammetry
or analog 2D plans. A concept for automated 3D modelling with data from diverse sources and machine learning
methods is presented. Point clouds of the bridges captured with cameras and/or laser scanners and 2D plans are
used as data base for the 3D model, which is created by machine learning methods from the fused point clouds by
calculating surfaces. The resulting model can be used for BIM and AR/VR applications.
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1. Introduction

Nowadays traffic infrastructure is one of the most

sensitive parts of our world. Without an intact

traffic infrastructure, supply chains will collapse

and our daily lives are thrown off course. There-

fore, it is more important than ever to maintain

our transport infrastructure. Within the traffic in-

frastructure, bridges are of special importance. A

partially or fully blocked bridge causes long and

preventable traffic jams. Therefore, it is necessary

to recognize the necessity of maintenance work

early and plan the works wisely. A helpful plan-

ning tool for maintenance processes is building

information modeling (BIM). But the base of such

a model is a digital geometrical 3D representation

of the bridge. Especially older bridges with a high

maintenance effort do not have such a model.

In this work, we present a workflow for a 3D

reconstruction of bridges using different data

sources and machine learning (ML) approaches.

Two sensor systems and a 2D planebased method

are introduced, as well as a 3D segmentation

pipeline. The workflow is illustrated by an exam-

ple. We choose a pedestrian bridge in Freiburg,

Germany, across the river Dreisam to test the pro-

cess. The so called Ottiliensteg, shown in Figure

1, is approximately 35 m long, 2 m wide and has

a height of about 4 m.
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Fig. 1.: Ottiliensteg in Freiburg, Germany

2. Related Work

The base for building information modeling is

always a digital geometrical 3D model of the com-

plex structure, which is mostly not available. First

of all the structure has to be captured by suitable

sensors or a digitization of plans is necessary.

There are different sensors for capturing complex

3D structure available on the market. Bornaz and

Rinaudo (2004) use for example terrestrial lasers

scanner (TLS). On the other hand, mobile laser

scanners (MLS) are used by Kukko et al. (2012).

Additionally, photogrammetry could be used to

create a 3D point cloud, but this is not part of this

work.

A different approach for creating the 3D model of

the complex structure, is using 2D plans. Poku-

Agyemang and Reiterer (2023) describe a semi-

automatic method to generate a 3D point cloud

from 2D design plans. In this case, the individual

components of the bridge, like the superstructure,

pillars or abutments, are reconstructed individu-

ally. At the end of the process, the point clouds of

the different elements are fused to one complete

3D point cloud of the bridge.

The next step in the 3D model generation is 3D

segmentation, which is tackled by different ap-

proaches today. A general overview is given in

Guo et al. (2019). Mainly, these approaches can

be divided into projection-based, discretization-

based, point-based, and hybrid methods. In Mil-

ioto et al. (2019) the point cloud gets projected

into a spherical image and processed by 2D convo-

lutions. Sparse 3D tensors are introduced in Choy

et al. (2019) to allow processing discretized large

scenes with sparse 3D convolutions. KPConv by

Thomas et al. (2019) defines kernel points which

can be used to directly process point clouds. An-

other way to work directly on the point cloud has

been introduced in Zhao et al. (2021). Here, atten-

tion mechanisms are used instead of convolutions.

The spherical and bird’s eye projections are fused

by using a KPConv layer in Kellner et al. (2022).

3. Method

3.1. 3D data capturing

As already mentioned, a workflow for creating

3D models of bridges is shown based on the

example of Ottiliensteg. Three different kind of

data sources are used to create point clouds of

the Ottiliensteg bridge. First of all the terrestrial

laser scanner Leica RTC360 by Leica Geosystem

AG (2023b) has been used to capture the bridge

from different position on and around the bridge.

The scans from different position are registered

using the Leica Cyclone post-processing software

to create a complete reconstruction of the bridge.

Additionally, the handheld mobile laser scan-

ner Leica BLK2GO by Leica Geosystem AG

(2023a) has been used to capture the bridge by

continuously walking on and around the bridge.

Based on the so called GrandSLAM technique, the

BLK2Go creates the 3D point cloud in realtime.

The GrandSLAM fuses simultaneous location and

mapping from visual and lidar with IMU data.

At last, 2D plans provided from Stadt Freiburg,

are used to create a point cloud of the individual

elements of the bridge. The components of the

bridge on the 2D plan are the north and south

abutment, railing and the concrete superstructure.

The individual point clouds of the elements are

created with the pipeline introduced by Poku-

Agyemang and Reiterer (2023) and fused into a

complete point cloud of the bridge.

3.2. 3D Deep Learning

Because of possible differences between as built

and as planned elements, we do not want to

rely the segmentation solely on the point cloud

generated from 2D plans. For this reason, we

segment the captured point clouds from the 3D

sensor by using KPConv. We choose K = 15

deformable kernel points with an input radius of



3022 Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

r = 3 m and r = 5 m leading to the neighborhood

Nx = {xi ∈ P | ‖xi − x‖ ≤ r} with

the center point x. To ensure that the number of

points in the defined sphere Nx is not too large, the

entire point cloud is reduced in advance by voxel

downsampling using a voxel size of 0.03 m for

the smaller radius and 0.1 m for the larger radius.

Since we do not assume that color coding of points

is given in all cases, we will train the Neural

Network (NN) only on the 3D points themselves

and not use colors as input features.

The classes to be identified are reduced to the gen-

eral basic structures as well as to auxiliary classes.

The fundamental basis is the dataset from Lu et al.

(2019) containing 10 RC highway bridges around

Cambridgeshire, United Kingdom. We adapted

the data and enriched it by two more bridges

recorded in Freiburg leading to the dataset defined

in Table 1. It is worth noting that the ratio for the

distribution of points in both the training and test

data is very atypical. The reason for this is that

the data we recorded was taken with a different

sensor and has a higher density of points. Since

these bridges are used for testing purposes, this

distribution occurs.

Table 1.: Semantic segmentation class list with

amount of points belonging to it. The data belong-

ing to train are used to train the model, while the

data belonging to test are used only to evaluate the

performance of the trained model.

Class ID Train Test

Unlabeled 0 1.463.051 153.963
Ground 1 21.673.976 35.406.474
High vegetation 2 12.193.852 32.584.318
Abutment 3 21.091.544 7.133.976
Superstructure 4 42.809.109 17.156.002
Road surface 5 23.300.776 10.381.405
Railing 6 7.261.507 2.932.185
Traffic signs 7 13.451 3.741
Pillar 8 6.893.551 7.498.267

3.3. Fusion

The complexity of a bridge structure makes it very

difficult to fully record it with just one data cap-

turing technique. The various 3D data acquisition

techniques have their advantages and limitations

in the reconstruction of the bridges. For example,

the TLS- and MLS-based methods could capture

just the visible parts of the bridges. The base or big

parts of the abutment are not visible, therefore the

point clouds created from 2D plans are the perfect

addition. The 3D point clouds of all three data

sets are fused by registering them into the same

coordinate system. The fused point cloud provides

a fully reconstructed point of the bridge including

the visible and invisible- underground parts of the

bridge.

4. Experiments

4.1. 3D data capturing

To reconstruct the 3D model from the laser scan-

ner measurements, the 10 TLS scans on and

around Ottiliensteg footbridge are processed in

Leica Cyclone software. Approximately 185 mil-

lion registered points create a dense 3D model

of the bridge and its environs as shown in Fig-

ure 2a. The 3D point cloud from the MLS was

obtained directly from the Leica BLK2go with

approximately 4 minutes of measurement on and

around the bridge. The point cloud reconstructed

by the MLS consists of approximately 42 million

points as shown in Figure 2b. Both point clouds

was obtained by the TLS and MLS consist of

the geometric coordinates and RGB-data from the

internal cameras from the sensor systems.

The 2D plans from the Stadt Freiburg were used

to reconstruct individual components of the bridge

as designed. The reconstruction was done at a

resolution of 1 cm interval and a unique RGB

information was provided for each bridge compo-

nent. The reconstruction provides both visible and

invisible parts of the bridge as shown in Figure 2c.

Although the RGB data provide additional infor-

mation about the bridge, they have no semantic

meaning. For this purpose, the points must be

assigned to the individual components of a bridge.
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(a) TLS: point cloud

(b) MLS: point cloud

(c) Bridge Plan point cloud

Fig. 2.: 3D reconstruction of Ottiliensteg Bridge

4.2. 3D Deep Learning

For evaluation we use the mean intersection-over-

union (mIoU). As the classes within the dataset

are imbalanced (see Table 1) we will use a weight

for each class wc = 1√
fc

leading to the weighted

cross-entropy loss Lwce:

Lwce = − 1∑
c∈C wc

∑

c∈C

wcyc log ŷc (1)

The Lovász-Softmax loss Lls Berman et al.

(2018) allows for optimizing the IoU metric. It is

defined as:

Lls = − 1

|C|
∑

c∈C

ΔJc(e(c)) (2)

Where e(c) is the vector of pixel errors for class

c and ΔJc is the Lovász extension of the IoU.

To optimize for the pixel wise accuracy and the

IoU we use a liner combination of both losses

L = Lwce + Lls. To avoid overfitting the data

gets augmented. First, we drop a random amount

of U(0, 0.3) points. Afterward, the x, y, and z

position of each point gets shifted by the value of

U(−2, 2), the point cloud gets rotated around the

z-axis by an angle between 30◦ to 330◦, each point

cloud gets scaled by a value of U(0.8, 1.2) and we

add noise with N (μ = 0, σ2 = 0.01). Each aug-

mentation but the first gets applied independently

with a probability of 0.5.

The test results are shown in Table 2. Due to

the increase of the receptive field, the metric has

slightly decreased. However, this may be due to

the lower resolution of the points. Because of the

high memory requirements, it is not practical to

increase the radius while keeping the voxel size

constant. The metric can be further optimized by

finding the right balance between receptive field,

voxel size, and memory requirements.

An example bridge and its associated prediction

is illustrated in Figure 3. It is important to mention

that we did not use the color as input feature for

training the NN.
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Table 2.: IoU for each class on the test set with dif-

ferent input radius r. The overall mIoU decreases

slightly with an increasing radius, but that may

also be due to the lower resolution.

Class r = 3 m r = 5 m

Unlabeled 0.48 0.51
Underground 0.77 0.68
High vegetation 0.93 0.93
Abutment 0.66 0.5
Superstructure 0.91 0.92
Top surface 0.55 0.6
Railing 0.88 0.86
Traffic signs 0.02 0.01
Pillar 0.98 0.95

mIoU 0.69 0.66

Input bridge

Prediction of our trained NN

Fig. 3.: Example test bridge. The trained NN is

able to make a good prediction for unseen bridges.

No color was used for the input of the NN, it is

only for illustration for the reader.

4.3. Fusion

The segmented semantic point cloud from the 3D

reconstruction from the sensor system and the 3D

reconstruction of the 2D plans are fused in the

same coordinate system. The coordinate system

of the TLS is used as the reference system for

the registration process. Visible keypoints for ex-

ample the ends of the hand railing on the sides

of the bridge are used to compute the translation

and rotation parameter. The RMS errors for the

registration is about 0.03 m and 0.11 m for the

registration between the MLS and the 2D plan

respectively. The fused semantic point cloud con-

sists of both the visible and invisible parts of the

bridge above and beneath the earth’s surface. The

final fused point cloud and the bridge separated

from the environment using the semantic informa-

tion can be seen in Figure 4.

Full fused bridge

Bridge separated from environment

Fig. 4.: Fused semantic point cloud of Ottiliensteg

bridge. Supplementing the data from the scanners

with the data from the 2D plans is valuable be-

cause it gives the final model information that was

not originally visible. It can be seen most clearly

at the abutment.



3025Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

5. Conclusion

We have shown how a homogeneous point cloud

can be generated from different data and sensor

sources. Using the semantic information from the

2D plans and the NN, the point cloud can be

reduced to the object itself and individual relevant

components can be separated.

The next step in this reconstruction method has

to be the implementation of a suitable geometric

modeling process. In further research, the NN can

be further optimized, for example, by using an

adaptive receptive field to link global and local

context. A greater variation of different bridges

within the data can also improve generalization.

Furthermore, the fusion can be optimized and it

can be investigated in which time point the fusion

is most suitable to achieve the best result.
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