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Monitoring the cracks in walls, roads and other types of infrastructure is essential to ensure the safety of a structure,
and plays an important role in structural health monitoring. Automatic visual inspection allows an efficient, cost-
effective and safe health monitoring, especially in hard-to-reach locations. To this aim, data-driven approaches based
on machine learning have demonstrated their effectiveness, at the expense of annotating large sets of images for
supervised training. Once a damage has been detected, one also needs to monitor the evolution of its severity, in
order to trigger a timely maintenance operation and avoid any catastrophic consequence. This evaluation requires a
precise segmentation of the damage. However, pixel-level annotation of images for segmentation is labor-intensive.
On the other hand, labeling images for a classification task is relatively cheap in comparison. To circumvent the
cost of annotating images for segmentation, recent works inspired by explainable AI (XAI) have proposed to use
the post-hoc explanations of a classifier to obtain a segmentation of the input image. In this work, we study the
application of XAI techniques to the detection and monitoring of cracks in masonry wall surfaces. We benchmark
different post-hoc explainability methods in terms of segmentation quality and accuracy of the damage severity
quantification (for example, the width of a crack), thus enabling timely decision-making.
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1. Introduction

The automated detection and segmentation of

cracks in images is challenging due to the va-

riety of crack aspects, the complexity and di-

versity of materials, and irregular illumination.

Various approaches have been developed for this

task, mainly based on image processing Yam-

aguchi et al. (2008); Hoang (2018). Data-driven

approaches based on supervised learning have

shown great performance, often using the popular

U-Net neural network architecture Augustauskas

and Lipnickas (2020). However, they require to

label large amounts of images at pixel-level.

Post-hoc explainability methods aim at explain-

ing the decisions of black-box models such as

deep neural networks (see Arrieta et al. (2019) for

a review). In particular, in this work, we focus on

attribution methods, that associate a relevance to

each feature in the input. The authors of Seibold

et al. (2022) proposed to leverage the explanations

of a classifier to segment damages in magnetic

tiles and sewer pipe images, motivated by the fact

that while annotating images for supervised seg-

mentation is tedious, classification labels can be

obtained at a fraction of the cost. In this work, we

benchmark the ability of several post-hoc explain-

ability methods, as well as post-processing steps,

to generate high-quality segmentation masks for

cracks in masonry building wall surfaces.

A major concern is the development and prop-

agation of cracks over time, leading to increased

stress and subsequent failure of the structure. The

severity of a crack can be quantified, for in-

stance, through width measurement Carrasco et al.

(2021). Thus, we also study if these methods are

usable to quantify damage severity and monitor its

evolution, thus enabling timely decision-making.

2. From Classification to Segmentation

We propose the following methodology to gener-

ate crack segmentation masks:

(i) Train a binary classifier on positive (cracked)

and negative (non-cracked) training images.

(ii) Perform inference on unseen test images. For

each positive prediction, extract post-hoc ex-

planations of the classifier and produce attri-

bution maps for the positive class.

(iii) Post-process the resulting attribution maps:
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Image Ground truth U-Net Input×Gradient IntGrad DeepLift DeepLiftShap GradientShap LRP

Fig. 1.: Visualization of crack segmentations obtained via post-hoc explainability methods and post-processing.

Table 1.: Crack segmentation quality for different explainability and post-processing methods (F1 score in %).

Post-processing
Baseline Input×Grad IntGrad DeepLift DeepLiftShap GradientShap LRP U-Net (oracle)thresh. morph.

simple
� 12.18 14.64 18.91 22.58 24.03 13.88 22.17

83.67
� 4.73 23.30 27.74 34.44 38.19 20.61 37.43

GMM
� 18.05 21.54 28.92 31.70 37.07 19.78 28.39
� 7.88 20.76 25.96 29.55 33.10 21.27 36.16

(a) Thresholding using the simple or GMM

strategies as in Seibold et al. (2022).

(b) Morphological closing and area opening

operations, in order to close gaps in the

mask and remove noisy attributions (see

Figure 1).

We conducted experiments on the Experimental

DIC (digital image correlation) cracks data set

Rezaie et al. (2020), consisting in 256×256 im-

age patches from stone masonry walls damaged

in a shear-compression loading experiment. We

complemented this data set with 874 additional

negative patches coming from the same walls.

The crack classifier network is a VGG11 with

128 neurons in the fully-connected layers. In

this study, we evaluated following post-hoc XAI

techniques: Input×Gradient, Integrated Gradients

(IntGrad), DeepLift, DeepLiftShap, GradientShap

and Layer-wise Relevance Propagation (LRP). We

also include a simple baseline where the image

is just converted to gray-scale before the post-

processing. As an oracle, we trained a U-Net11

on the segmentation labels of the training set.

The segmentation quality is evaluated by the F1

score on the test set. For each method, we report

the results using combinations of thresholding and

morphological post-processing in Table 1.

3. Crack Severity Monitoring

To assess the severity of cracks, we computed the

number of cracks per patch (CPP) Pantoja-Rosero

et al. (2022), the total crack area per patch, and the

maximum crack width, using the width estimation

method from Carrasco et al. (2021). We report

the mean absolute error (MAE) or mean absolute

percentage error (MAPE, in %) with the ground-

truth measure for two of the methods in Table 2.

Table 2.: Crack severity assessment results.

Method
Post-processing CPP Area Width
thresh. morph. MAE MAPE MAPE

DeepLift
simple � 0.81 146.0 264.6
GMM � 0.72 352.1 374.2

LRP
simple � 0.90 91.0 163.1
GMM � 0.82 261.8 257.6

U-Net (oracle) 0.74 20.1 20.8
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