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Markov models are widely used in maintenance modelling and system performance analysis due to their computa-
tional efficiency and analytical traceability. However, these models are usually restricted by the use of exponential
distributions, which are the base of the Markov modelling. Phase-type distributions provide a tool to approximate
an adequate distribution, such as Weibull, log-normal and so on, by means of Markov processes.
Our earlier work proposes a phase-type maintenance model considering both condition-based inspections and delays
before the repairs, where extra matrices are defined in the modelling of repair delays to keep track of the probability
masses to repair. The model provides quite good estimations but is complex and requires good knowledge in its
implementation.
This paper aims to get rid of the extra matrices and investigate the modelling of the repair delays with phase-type
distributions. An illustration case of road bridges is presented to demonstrate the modelling process and the results.
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1. Introduction

With the rapid development of monitoring tech-

nologies, condition-based maintenance (CBM) is

gaining popularity in the past decades. Various

maintenance management systems have been de-

veloped to store the monitoring results and assist

in planning different maintenance tasks. These

tasks are often planned based on predefined rules

derived from the analysis results of maintenance

models, among which Markovian models are used

extensively due to their computational efficiency

and analytical traceability.

The Markov models in the previous literature are

usually restricted by the memory-less property of

the Markov Chain, which is shown as exponential

sojourn times between the discrete states. Phase-

type (PH) distributions provide a solution to fit

general distributions by means of Markov chains

and thus capture the non-Markovian deterioration

while still taking advantage of the tractability of

the Markovian models. The class of PH distri-

butions has strong versatility in approximating a

generic distribution, and any non-negative distri-

bution can be approximated arbitrarily close by a

PH distribution (Lindqvist and Kjølen, 2018).

In our earlier work, a Markov-based maintenance

model is proposed considering both condition-

based inspections and deterministic delays before

the repairs (see Sun and Vatn (2023)). The deteri-

oration process is approximated with PH distribu-
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tions, while the delays before the repairs are mod-

elled by defining extra matrices and keeping track

of the probability masses to repair. The model pro-

vides quite good estimations but is complex and

requires good knowledge in its implementation. In

addition, it requires some modification if we want

to model the repair delays as a distribution instead

of deterministic values.

This paper considered the same case of bridge

management in Norway and investigated the mod-

elling of both the bridge deterioration and the

repair delays with phase-type distributions. The

delays are assumed to be lognormal-distributed

instead of deterministic to limit the number of

phases required.

The remainder of this paper is organised as

follows: Section 2 summarised the background

knowledge in phase-type distribution and the fit-

ting approach used in this paper. The detailed

modelling process is then presented in Section

3, followed by some numerical results in Section

4. We end with a summary in Section 5. The

notations used in this paper are listed in Table 1.

2. Phase-type distributions

Consider a Markov process with state space S =

{1, 2, ...,m,m+1}, where the state 1, 2, ...,m are

transient and state m + 1 is absorbing. The time

to absorption is then said to follow a phase-type

distribution. The infinitesimal generator matrix A

is a (m+ 1)× (m+ 1) matrix given by:

A =

(
S s

0 0

)
(1)

Where S is a m×m matrix defining the transition

rates among the transient states; s is a m×1 vector

describing the transition rates from the transient

states to the absorbing state; 0 is a 1 × m vector

of zeros.

An essential task in the implementation of PH

distributions is to determine its representation (α,

S) based on either empirical data or probability

density functions. Many fitting approaches are

available in the literature, generally classified as

moment-based and likelihood-based. In this pro-

cess, the number of phases m and the structure

of the transient matrix S need to be determined.

Table 1. Notations

Notation Interpretation

αj
Initial probability vector for a phase-
type distribution

Sj
Transition matrix among the transient
states for a phase-type distribution

τj

Intervals between inspections for the
bridge in state j. It is assumed that τj =
kjτn

Sd
A set of Markov states describing the
bridge deterioration

Sr
A set of Markov states describing the
repair process

βj
u

Initial probability for the uth phase of
Sr for vector Pj

μj
u

Transition rate from the uth phase of Sr
for vector Pj

P
j,lj
i (t)

Probability of the bridge being in macro
state i at time t while following an in-
spection regime {j, lj}

Aj Full transition matrix for Pj,lj vectors

Ad Transition matrix among Sd

Aj
r,u

Transition matrix from the uth phase to
the u+ 1th phase of Sr in Aj

Bj Full inspection matrix for Pj,lj vectors

Bj
u

Transition rates from macro state j to
the uth phase of Sr in Bj

eS, eM, eL

Probability that a minor repair, a major
repair or rehabilitation successfully re-
stores the bridge to the desired state

φj Intended state change before and after
the repair for the bridge in state j

θ
A maintenance action (inspection or a
type of repair)

Θ A set of all possible actions

Cθ Cost per action θ

df Expected duration of being in state 5

Cf
Penalty per unit time when the bridge is
in state 5

Estimating all transition probabilities can be com-

putationally expensive for a full PH distribution.

Therefore, some special cases are usually adopted

to limit the model complexity. A widely used

subclass is the Acyclic PH (APH) distribution,

where the S matrix becomes an upper triangular

matrix, can always be represented in three canon-

ical forms, and the parameter estimation essen-

tially reduces to PH fitting with these canonical
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forms (Okamura and Dohi, 2016). This paper uses

the moment-based fitting function in the Butools

toolbox (BuTools, 2015) to derive the parameters

for the PH distribution.

2.1. PH expansion of multi-state Markov
models

A multi-state Markov model can be extended to its
PH expansion by approximating the sojourn times
at each state with PH distributions and merging
them together. In the merging, the transition rates
to the absorbing state, i.e. the next macro state, are
split according to the initial probability vector of
the next states to ensure a good fitting (see proof
in Laskowska and Vatn (2020)). Suppose there is
a Markov chain with n macro states, where the
sojourn times at state j ∈ {1, 2, ...n − 1} are
approximated with PH distributions of mj phases.
Fig.1 visualizes the concept of merging.

1,1 ... 1,m1 2,1
λ1,m1→2,1

...

λ1,m1→2,i

2,m2

λ1,m1→2,m2

... n

state 1 state 2

Fig. 1. PH expansion of multi-state Markov model

The macro state j + 1 can be regarded as the
absorbing state from the intermediate state j,mj ,
where the transition rates can be derived by

[λj.mj→{j+1},1, ..., λj,mj→{j+1},mj+1
]

= αj+1 · λj→j+1

(2)

The expansion of the multi-state Markov model
can be represented with initial probability vector
P 0 = [α1,0] and transition matrix A.

A =

⎛
⎜⎜⎜⎜⎜⎝

S1 S1→2

S2 S2→3

. . .

Sn−1 Sn−1→n

0

⎞
⎟⎟⎟⎟⎟⎠

,

Sj→j+1 =

⎛
⎜⎝

0
...

αj+1 · λj,mj→j+1

⎞
⎟⎠

(3)

According to the Chapman-Kolmogorov differen-

tial equation, the probability distribution at time t

can be derived by:

P(t) = P0 · eAt (4)

3. Model Description

3.1. Model assumptions

The following assumptions are adopted in this

paper.

(i) The bridge deterioration is described by five

macro discrete condition states. The sojourn

times for bridge deterioration are assumed

Weibull-distributed. Based on the parame-

ters found in Fang and Sun (2019), three

states are required for approximating the

sojourn times in state 1 and state 2, while

two states are enough for state 3 and state 4.

(ii) The bridge condition can be revealed by

condition-based inspections and after each

repair. The time for the next inspection is

based on the bridge condition revealed at

the current inspection. Let t0 be the cur-

rent inspection time, and j be the bridge

condition revealed from an inspection; the

time for the next inspection would be at

t0+τj , where j ∈ {1, 2, 3, 4, 5} denotes the

bridge state found during the inspection. It

is assumed that τj = kjτ5, where kj are all

integers for simplification.

(iii) All inspections are perfect and can reveal

the actual bridge condition.

(iv) There are significant waiting times before

the conduction of repairs. The waiting times

depend on the bridge’s condition revealed

during an inspection and are assumed to be

lognormal-distributed, which is a distribu-

tion commonly used for modelling repair

times (Rausand et al., 2021). Extra penalties

will be triggered when the bridge is in state

5.

(v) There are three levels of repairs: minor re-

pair (MiRep), major repair (MaRep) and re-

habilitation (Rehab). The repairs will most

restore the bridge to the desired state but

may fail to achieve the planned bridge im-

provement in some cases. Table 2 shows

the ideal bridge improvement and success

probability of different levels of repairs.
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Table 2. Different levels of repairs

Level of repair
States improvement Success

probabilitySuccess Failure

MiRep 1 0 eS

MaRep 2 1 eM

Rehab 3 2 eL

Note: State improvement = 1 means to improve the bridge

condition by 1, e.g. from state 4 to state 3.

(vi) The bridge can further deteriorate while

waiting for the repair. In this case, the

bridge will follow the earlier time for repair

between the original and the rescheduled

one.

3.2. Modelling of condition-based
inspections

This section is based on Sun and Vatn (2023).

To represent various inspection regimes, a total

of k1 P1 vectors, k2 P2 vectors, k3 P3 vectors,

k4 P4 vectors, and one P5 vector are defined.

Each vector represents an inspection cycle with

a unique starting point and inspection interval.

The change of inspection regimes is represented

by shuffling the probability mass between these

P vectors. This process is illustrated in Fig. 2.

Consider an inspection at t = k1τ5, for vector

Pj,lj , the probability mass in macro state i �= j

will be moved to a Pi vector where the time for

the next inspection is k1τ5 + τi.

3.3. Markov processes for the P vectors

The above-mentioned P vectors can be modelled

with PH distributions. The Markov process for the

Pj vectors depends on the repair strategy for the

bridge in state j.

When no repair is planned for the bridge in state j,

the Markov process is a pure deterioration process

for Pj vectors (see Fig. 3).

When minor repairs are planned for the bridge in

state 2, the Markov process for P2 vectors can

be modelled as in Fig. 4. Similarly, when major

repairs are planned for the bridge in state 3, the

Markov process for P3 vectors are shown in Fig.

5. The Markov process for P4 and P5 vectors can

be established similarly based on the repair strate-

gies. The detailed process will not be presented in

Fig. 2. Modelling of condition-based inspections

this paper. In the following, the states without su-

perscripts are called the main states (Sd), while the

ones labelled with superscripts (e.g. 2.11, 2.2m2 )

are called states for repair (Sr).
To make it consistent in the calculation, we

establish transition matrices with the same size.
The number of phases for repair mr takes the
maximum value of (m2,m3,m4,m5), where mj
denotes the number of phases required for ap-
proximating the repair delays of state j. The full
transition matrix for Pj vectors can be established
as

Aj =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ad

A2−5 Aj
r,1

A2−5 Aj
r,2

. . .

Aj
r,mj

A2−5

. . .

A2−5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5)

where Ad contains the transition rates among Sd

(see Eq. 6); A2−5 contains the transition rates
among macro state 2 to macro state 5 in Sd, which
applies for every phase in Sr; Aj

r,u contains the
transition rates from the uth phase to the u + 1th
phase of Sr (see Eq. 7). It should be noted that
Aj

r,mj
represents the transition rates from the last

phase of Sr to Sd, where the success probabilities
eS, eM and eL are included based on the repair
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1.1 1.2 1.3 2.1

λ1.3−>2.1

2.2

λ1.3−>2.2

2.3

λ1.3−>2.3

3.1

λ2.3−>3.1

3.2

λ2.3−>3.2

4.1 4.2

λ3.2−>4.2

λ3.2−>4.1

5

λ4.2−>5

state 1 state 2 state 3 state 4 state 5

Fig. 3. Markov process for Pj when there is no repair planned for bridge in state j

1.1 1.2 1.3 2.1

λ1.3−>2.1

2.2

λ1.3−>2.2

2.3

λ1.3−>2.3

3.1

λ2.3−>3.1

3.2

λ2.3−>3.2

4.1 4.2

λ3.2−>4.2

λ3.2−>4.1

5

λ4.2−>5

state 1 state 2 state 3 state 4 state 5

2.11 2.21 2.31 3.11 3.21 4.11 4.21 51

2.12 2.22 2.32 3.12 3.22 4.12 4.22 52

μ2
1

... ... ... ... ... ... ... ...

μ2
2

2.1m2

2.2m2

2.3m2

3.1m2

3.2m2

4.1m2

4.2m2

5m2

μ2
m2−1

μ2
m2

· eS

μ2
m2

· (1− eS)

Fig. 4. Markov process for P2 when minor repairs will be planned for the bridge in state 2

strategy for the bridge in macro state j.

Ad =

⎛
⎜⎜⎜⎜⎝

S1 S1→2

S2 S2→3

S3 S3→4

S4 S4→5

0

⎞
⎟⎟⎟⎟⎠

(6)

Aj
r,u = diag(μj

u, ..., μ
j
u) (7)

During the inspections, the probability mass in Sd

is moved to Sr, described in Fig. 4 and Fig. 5
as the dashed lines. This process can be realized
by multiplying the Pj vector with its inspection
matrices Bj . For instance, Eq. 8 gives the inspec-
tion matrix for P2. Here B2

u is in the dimension

of state 2, I1, I3−5 and Ir denotes the identity
matrix in the dimension of macro state 1, macro
state 3 to 5 and the states in Sr respectively.
Meanwhile, the shuffling of the probability mass
described in Fig. 2 will be done, representing a
change of inspection regime. It should be noted

that here P j
2 includes the probability mass in state

2.1, 2.2, 2.3, 2.11, 2.21, 2.31, ..., 2.1mr , 2.2mr ,
2.3mr ; P j

3 includes the probability mass in state
3.1, 3.2, ..., 3.1mr , 3.2mr (see the states marked
with the grey box). The same applies to the mod-
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λ1.3−>2.1
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λ1.3−>2.2

2.3

λ1.3−>2.3

3.1

λ2.3−>3.1

3.2

λ2.3−>3.2

4.1 4.2

λ3.2−>4.2

λ3.2−>4.1

5

λ4.2−>5

state 1 state 2 state 3 state 4 state 5

3.11 3.21 4.11 4.21 51

3.12 3.22 4.12 4.22 52

μ3
1

... ... ... ... ...

μ3
2

3.1m3

3.2m3

4.1m3

4.2m3

5m3

μ3
m3−1

μ3
m3

· eM

μ3
m3

· (1− eM)

Fig. 5. Markov process for P3 when major repairs will be planned for the bridge in state 3

elling of P j
4 and P j

5 .

B2 =

⎛
⎜⎜⎝
I1

B2
1 · · · B2

m2
· · · B2

mr

I3−5

Ir

⎞
⎟⎟⎠ ,

Bu
2 = diag(β2

u, ..., β
2
u)

(8)

To ensure assumption (vi), the expected waiting

time before a repair should not be extended when

shuffling the probability mass. This can be done

by updating the inspection matrix. With a reverse

summation of the expected sojourn times of the

intermediate states, the expected waiting time for

the uth phase of Sr in vector Pj can be expressed

as 1

μj
u
+ 1

μj
u+1

+ ...+ 1

μj
mj

. Similarly, we can derive

the expected waiting times for all P vectors and

move the probability mass to a phase with the

closest waiting time.

3.4. Maintenance optimisation
A cost function considering the number of actions
(inspections and different repairs) is adopted to
evaluate the efficiency of a specific strategy.

E(C(T )) =

∑T
t=1

∑
θ∈Θ Cθ · E(Nθ(t))

T

+ df · Cf

(9)

where T denotes the total calculation time; Θ
denotes the set of possible actions (inspection and
different repairs); Cθ denotes the cost per action θ;
E(Nθ(t)) denotes the expected number of action
θ at year t; df denotes the expected duration of
being in state 5 and Cf denotes the penalty per
unit time when the bridge is in state 5.
The expected number of repairs can be calcu-
lated by summating the probability masses from
the Sr back to Sd at each integration. Based on
the intended state improvement, these probability
masses are classified into minor repairs, major
repairs and rehabilitation.

E(NRehab) =

T∑

t=0

∑

φj>2

∑

i∈Sd

(P
j,lj
i (t

+
)− P

j,lj
i (t

−
))

E(NMaRep) =

T∑

t=0

∑

φj=2

∑

i∈Sd

(P
j,lj
i (t

+
)− P

j,lj
i (t

−
))

E(NMiRep) =

T∑

t=0

∑

φj=1

∑

i∈Sd

(P
j,lj
i (t

+
)− P

j,lj
i (t

−
))

(10)

where P
j,lj
i (t+) denotes the probability mass at

state i of vector Pj,lj right after the integration

and P
j,lj
i (t+) denotes the one right before the

integration.
The expected number of inspections can be calcu-
lated as a summation of the probability masses in
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the whole vector at each inspection.

E(NInsp) =

T∑
t=0

∑
t=τ{j,lj}

∑
i∈Sd∪Sr

P
j,lj
i (t) (11)

4. Numerical Results

4.1. Input parameters

Table 3 presents the bridge deterioration and re-

pair delays parameters. The parameters for bridge

deterioration are estimated from a study by Fang

and Sun (2019) based on the bridge inspection

data in Shanghai. The parameters for repair de-

lays are based on the maintenance requirement

in Norway, which can be summarised as follows:

For bridges in state 1, no maintenance action

is required; for bridges in state 2, maintenance

should be conducted between four to ten years;

for bridges in state 3, maintenance should be con-

ducted between one to three years; for bridges in

state 4 and 5, maintenance should be conducted

within six months. Table 4 presents the unit costs

for different maintenance actions.

Table 3. Input parameters

State
Deterioration parameters Repair parameters

Scale (yr) Shape Mean (yr) Sigma

1 27.531 1.458 / /

2 26.025 1.599 4.421 0.142

3 31.788 1.328 3.167 0.149

4 21.266 1.217 1.375 0.149

5 / / 1.375 0.149

4.2. Bridge performance and the number
of actions

To verify the proposed model, we compared The

result with a Monte Carlo Simulation (MCS),

where the sojourn time at each main state follows

a Weibull distribution and the times before repairs

are lognormal-distributed with the parameters in

Table 3.

Consider a maintenance strategy with τ1 = 14

years, τ2 = 6 years, τ3 = 2 years, τ4 = 3

months and all repairs intend to restore the bridge

to state 1, the time-dependent state probabilities

from both approaches are presented in Fig. 6, and

Table 4. Cost values

CInsp CMiRep CMaRep CRehab

Cost

(103NOK)
500 1,000 2,000 4,000

the expected number of inspections and repairs are

presented in Table 5. As we can see, the proposed

approach gives very close results with the MCS re-

garding the bridge performance and the expected

number of actions.

Fig. 6. Time-dependent state probabilities for the il-
lustrative strategy

Table 5. Expected number of actions and system

performance

Proposed Model MCS

E(NInsp) 15.891 15.838

E(NMiRep) 3.727 3.689

E(NMaRep) 1.184 1.226

E(NRehab) 0.081 0.086

df (yr) 0.00091 0.00084

4.3. Optimisation result

Different strategies can be evaluated with the pro-

posed approach to search for an optimal solution.

In practice, the inspections are usually planned

over a time of years. The reference interval τ5 is

set to be one month, and only integer years are

considered for τ1, τ2 and τ3. For τ1, the upper
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limit for searching is set to be the expected sojourn

time while the ones for τ2 and τ3 are set to be its

expected waiting times before repair. The repair

for bridges in state 4 must be done within half a

year. Therefore, τ4 is between 1 month and half

a year. Considering a large number of potential

solutions, the Genetic Algorithm toolbox in MAT-

LAB is used to search for an optimal solution,

with a simulated time of 200 years and a stopping

condition of 30 stall generations.

Table 6 presents the optimal solution considering

different penalties when the bridge is in state 5. Its

expected number of actions, the duration in state

5 and the expected annual costs are evaluated with

the MCS of 2,000,000 replications. As we can see,

with a higher penalty, the model leads to strategies

with more frequent inspections, more early repairs

and shorter duration in state 5, which is consistent

with our analysis.

Table 6. Optimisation results considering different Cf

Cf

(103 NOK/yr)
20,000 50,000

Inspection
Intervals

τ1 = 12 years,
τ2 = 7 years,
τ3 = 2 years,
τ4 = 6 months

τ1 = 10 years,
τ2 = 5 years,
τ3 = 2 years,
τ4 = 6 months

Repair
Strategy

μ2 = MiRep, μ3 = MaRep, μ4 = μ5 = Rehab

E(NInsp) 16.116 21.48

E(NMiRep) 4.269 4.261

E(NMaRep) 1.032 1.066

E(NRehab) 0.004 0.004

df (yr) 6.193× 10−4 2.252× 10−4

5. Summary

This paper presents an extension of our earlier

work on the PH model considering condition-

based inspections and significant delays before the

repairs (Sun and Vatn, 2023). In contrast to the

deterministic delay times modelled with extra ma-

trices, this paper considered lognormal-distributed

delay times and investigated modelling such de-

lays with PH distributions. Monte Carlo Simula-

tion is used to verify the results.

With this model, the expected system performance

can be assessed given the inspection intervals, the

delays before the repairs and the repair actions at

different system conditions. An illustration case

of road bridges is presented to demonstrate the

modelling approach and its potential use in main-

tenance optimisation.
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