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With the advances in many areas such as sensing technologies, new connectivity options and improved IoT
architectures, predictive maintenance is considered as a promising solution for the maintenance of Smart Buildings
(SBs). However, because of the lack of failure data for these systems, the approaches in the literature, which are
mostly data-based approaches, are not always applicable. Moreover, a SB is a system of systems where failures
in one system can propagate and impact other systems, making maintenance decisions difficult. In this paper, we
propose a fault prediction model for the smart building lighting system. This model is based on a Bayesian Network
that is scalable according to the operating conditions of the system components. We solely rely on manufacturer’s
data that characterize each component to build the failure probability distributions. We show that we are able to
characterize and generate statistics of the impacts of a maintenance operation on the system and its components for
different intervention scenarios.

Keywords: Smart Building, Predictive Maintenance, Bayesian Network, Weibull distribution, Reliability, Failure rate

1. Introduction

With advances in many fields such as sensing

technologies, new connectivity options and im-

proved IoT architectures, predictive maintenance

(PdM) is proposed as a new type of paradigm in

the field of operational safety, allowing mainte-

nance operations to be performed based on the

prediction of certain failures or degradations. Sev-

eral models of failure prediction have been pro-

posed for general use cases, such as in Muthu-

mani (2010). According to Zonta et al. (2020),

three types of approaches can be distinguished to

PdM, namely: Physical model based approaches,

knowledge-based approaches and data-driven ap-

proaches. Currently, data-driven approaches are

most often used for PdM. When considering a

Smart Building (SB), most of PdM approaches are

data-based, mainly through the development of

machine learning algorithms such as in Susto et al.

(2015) and Bouabdallaoui et al. (2021). However,

these approaches are not always applicable be-

cause they require a large amount of failure data

which is generally not available in the case of SB

as these buildings are newly constructed. More-

over, a SB can be seen as a system of systems

where failures in one system can propagate and

impact other systems, making maintenance deci-

sions difficult. Designing a process that optimizes

operating costs through maintenance is therefore

a very complex task. Such a decision-making

process requires the development of a predictive

model that can integrate the various interactions

of each SB subsystem including the interactions

between them and predict their failure. Such fail-

ure prediction model must be able to evolve ac-

cording to maintenance actions performed over

time. Thus, modelling the smart building in its

entirety is a very complex task. Studies conducted

by Cauchi et al. (2018) present a framework for

modeling a single system and perform a predictive

maintenance approach using Fault Maintenance

Trees using Continuous Time Markov Chains.

In this paper, we propose a fault prediction

model for a smart building lighting system. It

is based on a Bayesian Network that is scalable
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according to the lighting system component’s op-

erating conditions. With the lack of failure data

of this system, we solely rely on manufacturer’s

data – the Mean Time to Failure (MTTF) metric–

that characterizes each component of this system

to build their failure probability distribution. We

assume that the component failure distribution

is a Weibull Distribution, since it is one of the

most widespread models used to describe failure

time in component reliability analysis of complex

systems (Hossain et al. (2003)). By modifying

the value of the shape coefficient, it accurately

describes the model of faults that can occur in the

different phases of the life-cycle of a component

and allows them to be related to the bath curve

(Hisada (2002)). The proposed approach allows

modeling the maintenance operation impact as an

update of the Weibull distribution parameters and

then the Bayesian Network. The proposed model

can then be integrated into a decision support pro-

cess for maintenance decision-making optimiza-

tion.

Structure of the paper: Section 2 introduces the

Smart Building Lighting System. This is followed

by the developed methodology for modeling the

SB Lighting System in Section 3. The numerical

results are presented in Section 4, and a conclu-

sion is given in Section 5.

2. The Tesla Room Lighting System

The Smart Building of Nanterre 3 (NR3) is a two-

storey building belonging to CESI-Nanterre, an

Engineering School in Paris suburb area, France.

This SB is composed of the following 7 rooms:

5 multipurpose rooms, an electrical room (resp.

server room) where the electrical (resp. computer)

system is centralized.

Each room contains a lighting system and a HVAC

(Heating, Ventilation, and Air Conditioning) sys-

tem. Each system is composed of a physical part

and a logical part with several sensors that can

interact with each other, and communicate with

the sensors of the other rooms. In this paper,

we are interested in the lighting system of one

specific room: the Tesla room. This room general

architecture with the different interactions is given

in Figure 1. The Tesla room lighting system is

composed of:

• Light fixtures: There are 6 of them, each repre-

senting a block composed of 12 bulbs, a temper-

ature sensor (°C), an infrared sensor (IR) and a

Lux meter sensor.

• Internal switch (Cisco Catalyst 3650CX): It

communicates with all the sensors in the room

and supplies the lighting fixtures with Power

Over Ethernet energy.

• Floor switch (Cisco Catalyst 2950X): It com-

municates with the room internal switch, the

server and the electrical system.

Fig. 1. Architecture of the Tesla room

3. Fault Prediction Methodology

Based on the architecture presented in Figure 1,

the lighting system includes a logical part and a

physical part. The logical part is defined by all the

data from the sensors as well as the transmission

of these data to the server, while the physical part

is defined by all the hardware components of the

room. To achieve predictive maintenance of the

room’s lighting system, it is necessary to know:

• The operating status of each component of the

room’s lighting system.

• The impact of each component on the operation

of the room.

• The room operating status after a maintenance

operation has occurred.

In order to meet the above requirements, we fol-

low the methodology summarized in Figure 2
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Fig. 2. Fault Prediction Methodology

• Step 1: Using fault trees, we are able to cal-

culate the probability of failure of the room’s

lighting system PFT , considering the logical

combinations between its components.

The fault tree model also allows us to identify

the critical components of this system, i.e., the

set of components which individual failure in-

duce directly the system’s global failure.

• Step 2: Determine the Weibull’s distribution

parameters (α, β) according to the MTTF val-

ues provided by the manufacturer. We can ob-

tain by simulation the values of α and β by

using the Weibull distribution mean formula.

• Step 3: The fault tree model defined in Step

1 is used as the basis for building the knowl-

edge representation. By adding the component

probability distributions obtained in Step 2, we

are able to build the Bayesian network. Us-

ing Bayesian inference, we compute the condi-

tional system’s failure probability.

Depending on the maintenance action performed,

the Weibull distribution parameters for each com-

ponent in Step 2 may change. Therefore, a

Bayesian inference is performed again to obtain

the new system failure probability.

We present the details of each step in the fol-

lowing subsections.

3.1. Lighting System Fault Tree Model

The Fault Tree Analysis (FTA) is a method which

uses a tree structure to represent the elementary

events (causes of failures) and their combinations

leading to the occurrence of a dreaded event,

namely the failure of the whole system. The com-

binations of the elementary events are realized

using logic gates. The interest of this method is

that it makes it possible to quantify the occurrence

probability of the undesirable event, in our case

the lighting system failure. Moreover, it allows

us to identify the critical paths (shortest ways)

leading to the occurrence of this event. The fault

tree of the Tesla room lighting system is shown in

Figure 3. The events in bold represent the failures

which directly induce the failure of the whole

lighting system of the room and are obtained by

applying the Minimum Cut Set (MCS) method

(Kumar et al. (2018)). In this fault tree, the critical

event is: the lighting system does not work (the

bulbs do not light up) and it can be due to one of

the following failures:

• The failure of all the bulbs in the room.

• The failure of all the IR and Lux sensors.

• The failure related to the HT and LT MicroGrid.

• The failure of the floor and internal switches.

3.2. Characterization process of
maintenance operations

The Weibull distribution is a continuous distribu-

tion in the exponential distribution family. It has

been used extensively for life or failure analysis.

Various studies in operational safety describe the

life cycle of a component (Xie (1996)). This cycle

is decomposed in three phases, described in Figure

4. The parameter β of the Weibull distribution

(α, β) can be used to distinguish between these

three phases. Thereby, when an intervention is

carried out on a component, its operating status

improves. This improvement can be modeled as

a decrease of the β value. We then assume, in

our case study, that the failure of each component
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Fig. 3. Fault tree of the Tesla room lighting system.

of the system is given by the Weibull distribution

(α, β). Table 1 summarizes the different mathe-

matical formulas of this distribution.

Table 1. Equations related to the Weibull distribution (α, β).

Description Equation

Hazard Rate h(t) = β
α (

t
α )

β−1

Probability Density Function f(t) = β
α (

t
α )

β−1e−( t
α )β

Cumulative Density Function F (t) = 1− e−( t
α )β

Reliability Function R(t) = e−( t
α )β

3.3. Bayesian Network Model

A Bayesian network is a probabilistic graphical

model representing a set of random variables in

the form of a directed acyclic graph. Cause and ef-

fect relationships between variables are not deter-

ministic, but probabilistic. Thus, the observation

of a cause or several causes does not systemati-

cally lead to the effects which depend on it, but

only modifies the probability of observing them.

Fig. 4. Component life cycle

• Bayesian Network structure: It is a directed

acyclic graph G(V,E) where V is the set of

vertices called nodes, and E the set of edges.

Each node v ∈ V corresponds to a vertex in

the Fault Tree, and each edge that connects two

nodes of the Bayesian network represents the

logical link in the fault tree. Since Bayesian

networks satisfy the Markov property (Fox et al.

(2008)), a node of the Bayesian network de-

pends only on its direct parents. This prop-

erty allows us to simplify the joint distribution

P (v1, v2, ..., v|V |) such as vi ∈ V , for all i ∈
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{1, ..., |V |}. After simplification (Spiegelhalter

et al. (1993)), the joint distribution is equal to:

P (v1, v2, ..., v|V |) =
|V |∏
i=1

P (vi|Parents(vi))

(1)

The set V is thus a discrete set of random

variables. In the case considered in this pa-

per, each v ∈ V represents a binary variable

(Faulty(0), Functional(1)).

• Bayesian Network parameters: These are the

conditional probabilities of each variable (node

in the Bayesian Network graph) and are usually

computed from experimental data.

The conditional probabilities of each variable

with respect to its direct parents are represented

as tables on the edges of the graph G(V,E),

called conditional probability tables (CPT).

In the following a Bayesian Network Construction

from Fault Tree Algorithm is presented in (Algo-

rithm 1), we denote by:

• Ns(v): possible states of the event v ∈ V .

• Pred(v): the predecessor set of the event v ∈
V .

• typeArc(v, Pred(v)): the type of logic gate

(OR, AND) linking the event v ∈ V and its

predecessor.

• Sv: the state of the event v ∈ V such as 0 ≤
Sv ≤ Ns(v).

• PF (v): the failure probability of the event v ∈
V .

Using the equations that describe the Weibull dis-

tribution shown in Table 1, we are able to define

the component’s failure probability. The failure

probabilities of the intermediate events and the

system are computed by Bayesian inference, and

thus, if the Weibull parameters α and β change,

the Bayesian network is automatically updated,

and the new probabilities are computed. In the fol-

lowing, we present three illustrative maintenance

policies to demonstrate how the proposed method

can predict the impact of a policy on the system.

4. Policy Maintenance Analysis

In this section, statistical results are produced by

simulation to analyze the impact of a maintenance

Algorithm 1 Fault Tree transformation to a

Bayesian Network

Input: FT (V,Ns(v) for v ∈ V ), PF (v)

Output: Bayesian Network (BN)

BN ← {}
FOR EACH v ∈ V by DFS (Depth-First

Search):

Add v to the BN

IF Pred(v) = ∅ :

CPT(v)← [PF (v),1-PF (v)])

ELSE:

A ← ∏
k∈Pred(v) Ns(k)

FOR EACH i in A:

IF typeArc(v, Pred(v)) = ”OR”:

IF
∑

k∈Pred(v) Sk = |Pred(v)|:
CPT(v)[-1] ← [0,1]

ELSE:

CPT(v)[i] ← [1,0]

IF typeArc(v, Pred(v)) = ”AND”:

IF
∑

k∈Pred(v) Sk = 0:

CPT(v)[0] ← [1,0]

ELSE:

CPT(v)[i] ← [0,1]

policy using the proposed fault prediction model.

Those results are provided for three kinds of main-

tenance policies.

4.1. Maintenance Policies

Policy 1: No maintenance operation

We assume that in this case, no maintenance

operation is performed in a simulation interval

[0, T ], where T is any fixed duration. To determine

how the parameters evolve over time, we proceed

as follows:

(i) At t = 0, we use the relation that links

Weibull distribution parameters (α0, β0) to

the MTTF (Lai et al. (2006)) :

MTTF0 =

∞∫

0

sf(s)ds = α0Γ(1 +
1

β0
)

(2)

Γ is the Gamma function defined as :

Γ (x) =

∞∫

0

sx−1e−sds (3)
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By solving Eq. (2) we obtain the parameters

(α0, β0) for each component of the system.

(ii) At 0 < t < T , we assume that the βi value

for each component i increases and αi is

constant αi = αi
0, such that:

βi
t+1 = βi

t + δi (4)

δi is the value at which βi
t increases at each

time step t. This assumption is based on

the fact that the component ages over time,

which leads it to the wear out phase, which

is characterized by a βi
t > 1. By solving

Eq. (4), we obtain the δi value.

δi =
βMTTF i

0
− βi

0

MTTF i
0

(5)

4.1.1. Policy 2: Maintaining all the
components

In the following, an intervention occurs every

time interval Tint. We determine how the parame-

ters evolve over time.

(i) At 0 < t < Tint, we use the same approach

seen in Policy 1.

(ii) At t = k.Tint, the kth intervention is per-

formed on all components. This action im-

plies an improvement of the state of each

component i. The health status is improved

such as the component is in his Useful Life,

which means βi
k.Tint

= 1, but the compo-

nent i is not new. This means that at each

intervention, the component ages over time.

This aging is modeled in our case by a linear

decrease of the MTTF, such as:

MTTF i
k =

MTTF i
0

k + 1
(6)

Using Eq. (2) we obtain αi
k such as:

αi
k =

MTTF i
k

Γ(1 + 1
βi
k.Tint

)
(7)

(iii) At k.Tint < t < (k + 1).Tint, as in Policy 1,

the βi
t value of the Weibull distribution for

each component i increases as follows:

βi
t+1 = βi

t + δi
′

(8)

where:

δi
′
=

βMTTF i
k
− βi

k.Tint

MTTF i
k

(9)

Policy 3: Maintaining only a MCS components

In this case, we start by ranking the MCSs by

maintenance priority. This ranking is based on two

main criteria: the MCS sizes and the MCS failure

probability. Then, similar to Policy 2, mainte-

nance is only applied to the highest priority MCS

components. So we just update their respective

distributions before the Bayesian network.

4.2. Numerical Results

For each maintenance scenario described previ-

ously, the metrics calculated are: the Tesla Room

Lighting System (TESLA-LS) and all its compo-

nent’s failure probability, and their failure rates.

For our experiments, we assume that:

• The probability density distributions of similar

components follow the same Weibull distribu-

tion.

• At time t = MTTF i, each component i is

in the wear out phase and its probability den-

sity distribution, follows a Normal distribution.

Taking a βi
MTTF i value equal to 3.6 allows us

to approximate the Weibull distribution to the

Normal distribution. Thus, βt=MTTF i = 3.6

Table 2 shows the manufacturer’s data, and its cor-

responding Weibull parameters after simulation

Eq. (2). First, we determine which MCS compo-

Table 2. (α0, β0) using MTTF0 manufacturer value.

Component MTTF0 α0 β0
(days)

Bulb 3650 1825 0.5
IR Sensor 1825 912.5 0.5
Lux Sensor 730 365 0.5
Floor Switch 10 950 5475 0.5
Internal Switch 10 950 5475 0.5
MicroGrid LT 7300 3650 0.5
MicroGrid HT 7665 3832.5 0.5
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nents are selected in Policy 3. The system’s small-

est MCS are of size 1 ({Internal Switch}, {Floor

Switch}, {MicroGrid LT}, {MicroGrid HT}) and

size 6, which include all conceivable arrange-

ments of Lux sensors and IR sensors. The MCS

made up of 6 Lux Sensors has the highest failure

probability out of all size 1 and size 6 MCSs. As

a result, Policy 3 is applied in this case, to the

MCS (Lux Sensors). Figures 5,6 and 7 show the

fault prediction model simulation results for each

maintenance policy. Thanks to this model, we

are able to measure the impact of a maintenance

policy on the system. For example, when no main-

tenance operation is performed, the failure rate

shows that the system evolves over the 3 phases

of its life cycle, until it fails at the same time as

the Lux sensors. However, when a maintenance

operation occurs (Figure 6 and 7), the failure rate

decreases at each Tint and aged over time. For

each maintenance operation type performed (on

all components (Figure 6) or on the MCS (Figure

7)), the system fails at the same time in both cases.

However, the probability evolution between the

first intervention and the failure time is different.

Note that a maintenance policy may change de-

pending on the evolution of other MCS’s failure

probability, as well as other constraints (financial,

logistical and others). This model, then, offers a

first decision support tool for the choice of the

maintenance policy to adopt (either with the help

of an expert, or by integrating it in an optimization

model).

5. Conclusion

In this paper, a methodology for fault prediction of

a lighting system in a smart building has been pro-

posed. The components of this system and their

interactions are modeled by a fault tree model. We

then transform it into a Bayesian network such

that the structure is determined using the fault

tree and the parameters of the network using a

Weibull distribution. The results show that using

this distribution and relying only on the MTTF

manufacturer’s data, since failure data are gen-

erally very few and insufficient, we are able to

characterize and generate statistics of the impact

of a maintenance operation on the system and its

components by updating the couple (β,MTTF )

for different intervention scenarios. The whole

model can be used as a decision support tool for

maintenance operation decision-making, and can

be integrated to a global optimization approach.
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Fig. 5. CDF and Failure Rate for policy maintenance 1.

Fig. 6. CDF and Failure Rate for policy maintenance 2.

Fig. 7. CDF and Failure Rate for policy maintenance 3.


