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In many systems, functionally interchangeable units are used together to meet a common demand or production
target. Such examples include parallel machines in production facilities, engines of a vessel, and fleets of ships,
airplanes, or trucks. These units typically receive large-scale maintenance dependent on their usage (such as
overhauls) and therefore, the timing of their maintenance is directly affected by the policy that determines how
the total demand is allocated to the units. We assume that there is a limit on how many units can get maintenance
simultaneously because of the limited resources that are involved (e.g., a dry-dock, hangar, or specialized workforce)
and/or because the demand needs to be met at all times. In this study, the problem of integrated planning of usage-
based maintenance and load sharing (i.e., the allocation of total demand to different units) for multi-unit systems is
mathematically analyzed. Also, a mathematical model is built to minimize the total maintenance costs during the
finite lifetime of the units (which is generally 10 to 40 years). An asymptotically near-optimal policy is proposed,
and its performance is compared with the performance of the optimal policy.
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1. Introduction

The joint planning of operations and maintenance

for a fleet of units is a complex process. Every

maintenance decision reduces the operational ca-

pacity of the fleet, while the policies for the allo-

cation of the workload affect the usage amount of

the units, and therefore, their maintenance needs.

Additionally, for systems with a limited number

of resources for maintenance operations, the num-

ber of maintenance operations that can be done

simultaneously is also limited. That is why it is

essential to consider the link between usage and

maintenance.

Recently, there has been a noticeable increase

in researchers’ interest in joint planning of op-

erations and maintenance. Motivated by applica-

tions in various sectors, many optimization mod-

els have been built for multi-unit systems. For

instance, Olde Keizer et al. (2018) study a 1-out-

of-n system inspired by a gas company. In that

problem, the continuity of production is critical

to meeting the gas demands of companies and

households. The authors build a Markov decision

process model, which considers an economic de-

pendence on the units and workload-dependent

failure rates to minimize average long-run cost.

Basciftci et al. (2020) address the problem of

scheduling maintenance and operations for a fleet

of generators, where the degradation of generators

is directly affected by how they are used. The

authors aim to create a solution that considers

the limitation of full demand satisfaction, which

may require demand curtailment in the event of

unexpected production losses. In doing so, they

develop a planning framework that maximizes

production while minimizing costs and including
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the generators’ degradation due to their usage.

More recently, Uit Het Broek et al. (2020) intro-

duce the concept of condition-based production.

This novel approach aims to control the level of

degradation and maintenance time by dynamically

adjusting the production rate of a single-unit sys-

tem. They build a model that maximizes the total

output until the time of pre-scheduled mainte-

nance. Uit Het Broek et al. (2021) extend the work

of Uit Het Broek et al. (2020) to two-unit systems.

They assume a fixed minimum production target

per period and an economic dependency on the

maintenance operations of the units. These two

papers show that condition-based production is

effective in reducing costs for both single and

multi-unit systems.

Although there are studies that analyze the op-

erations and maintenance planning problems an-

alytically for both single-unit systems (e.g., Uit

Het Broek et al. 2020; Drent et al. 2023) and

multi-unit systems (e.g., Ashizawa and Lu 2022

under economic dependence, studies that consider

the resource dependence are hardly available. This

dependency type arises when there is a commonly

used resource (e.g., tools, labors, facilities) for

maintenance operations of a multi-unit system.

Dilaver et al. (2023) study the problem of inte-

grated planning of asset-use and dry-docking for

maritime fleets under resource dependence. How-

ever, no study has yet been conducted to analyze

this problem analytically.

In this paper, the problem of integrated planning

of usage-based maintenance and load sharing (i.e.,

the allocation of total demand to different units)

under resource dependence is investigated. The

focus of this paper is on multi-unit systems such as

parallel machines in production facilities, engines

of a vessel, and fleets of ships, airplanes, or trucks,

where the units are functionally interchangeable

to meet a common demand or production target.

The main objective of this study is to introduce a

practically relevant policy called staircase policy

that can optimize the maintenance schedule and

load sharing among units to ensure that the de-

mand is fully satisfied at every time period while

minimizing the total cost of maintenance over a

finite horizon. Also, we evaluate the performance

of the staircase policy both analytically and nu-

merically, and show that it is asymptotically near-

optimal. The maintenance operations considered

in this paper are usage-based maintenance oper-

ations called overhaul. After each overhaul, the

units become as good as new. The other mainte-

nance types are left out of scope. The words main-

tenance and overhaul will be used interchangeably

in the rest of the paper.

The remainder of the paper is organized as

follows. Section 2 describes the problem formu-

lation. In Section 3, the feasibility condition of a

problem instance is introduced, and the structural

properties of the optimal policy are discussed. Ad-

ditionally, the staircase policy and its asymptotic

near-optimality are presented. Section 4 describes

how to obtain an optimal integrated planning so-

lution. Section 5 presents the results of the numer-

ical study where the lower-bound, asymptotically

optimal policy, and optimal policy are compared.

Finally, Section 6 concludes the paper by high-

lighting our contributions.

2. Problem Formulation

We consider a fleet consisting of identical and

functionally exchangeable units. Those units are

used to satisfy a common demand at a single loca-

tion over a finite planning horizon. The horizon

is divided into T periods of equal length, and

each period has a length of δ days. The periods

are numbered as 1, 2, . . . , T and the length of the

whole horizon is equal to δT days. There is a

constant operational demand per period, denoted

as D in terms of operating hours. This constant

amount of demand has to be satisfied by a fleet of

N units, which each have a maximum capacity C

per unit per period in terms of operating hours. It

is assumed that throughout the time horizon the

number of the units N is fixed. There is a single

maintenance facility available for overhauls. The

model begins with a whole new fleet of units, each

requiring an overhaul after at most K operating

hours. The duration of an overhaul is one period,

and the cost for each overhaul, which includes

the related costs for the unit to be overhauled,

e.g., labor cost, facility cost, and spare part cost,

is assumed to be fixed and denoted by Co. It is
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required that the demand is fully satisfied at all

time periods. The objective is to minimize the total

overhaul cost. We make the following assumption.

Assumption 2.1. (A1) D ≤ (N − 1)C, (A2)

C ≤ K, and (A3) C ≤ D.

(A1) is necessary for the feasibility of the problem

since the demand has to be satisfied even if one

of the units is under maintenance. Assumptions

(A2) and (A3) can be assumed without loss of

generality as a capacity C greater than the limit

K or the demand per period D cannot be fully

utilized.

3. Analysis

We first present a sufficient condition for the fea-

sibility of a problem instance, and a lower-bound

on the optimal number of overhauls in Section 3.1.

Then, we formally introduce the staircase policy

and its analysis in Section 3.2.

3.1. Preliminary Analysis

Let (y1,t,y2,t,...,yN,t) denote the system’s state at

the end of period t, where yi,t denotes the cumu-

lative usage level of unit i since its last overhaul

in terms of operating hours. We assume without

loss of generality that the units are ordered in

descending order based on their cumulative usage

levels. That is for any state (y1,t,y2,t,...,yN,t) at

the end of period t ∈ {1, . . . , T}, it holds that

y1,t ≥ y2,t ≥ ... ≥ yN,t.

Definition 3.1. The state (y1,t,y2,t,...,yN,t) is

feasible if and only if there is a policy for the

periods t+ 1, t+ 2, . . . , T , which guarantees full

demand satisfaction every time period and follows

the rules and restrictions of overhaul planning.

Proposition 3.1. The initial state, i.e, (0, 0, ..., 0)

at t = 0, is feasible if K ≥ D.

Proof. Let policy P be a policy where the most

used unit (i.e., in case of equality, it can be chosen

randomly among the most used units) is to be

overhauled in every period while the demand is

to be equally shared among the other units. Since

D ≤ (N − 1)C, then the state transition of the

system will be as follows under policy P :

The system is initiated at time 0 at state

(0, 0, ..., 0). In the first period, unit 1, which cor-

responds to y1,0 at the initial state, will be over-

hauled, and the demand will be equally shared

among the other units. Then, the state will become

( D
(N−1) ,

D
(N−1) , ...,

D
(N−1) , 0). In period 2, after

the unit corresponding to y1,1 is overhauled, and

the demand is equally shared, the state will be-

come ( 2D
(N−1) , ...,

2D
(N−1) ,

D
(N−1) , 0). By applying

the same policy for (N − 1) periods, the system

state will be ( (N−1)D
(N−1) , (N−2)D

(N−1) , ..., D
(N−1) , 0). As

the most used unit will be overhauled in every

period and D
(N−1) amount of workload will be

assigned to the rest of the units, once the system

goes into state ( (N−1)D
(N−1) , (N−2)D

(N−1) , ..., D
(N−1) , 0), it

will stay there for the rest of the horizon. Note

that the highest level reached by the cumulative

usage level of a unit is the level of D. Hence, state

(0, 0, ..., 0) is feasible if K ≥ D.

Based on Proposition 3.1 and Assumption 2.1,

the following assumption is made for the remain-

der of the paper.

Assumption 3.1. C ≤ D ≤ K

Theorem 3.1. The lower-bound on the minimum

number of overhauls is equal to (�DT
K � − N)+.

Hence, the corresponding overhaul cost is equal

to (�DT
K � −N)+Co.

Proof. Since there are T periods and D is the

demand per period, the total amount of demand

to be satisfied by the fleet is equal to TD. Note

that, as stated in Section 2, at the beginning of

the planning horizon, every unit can be used at

most K operating hours before its next overhaul.

This means that the fleet of N units can be used at

most NK operating hours until the next overhaul.

After each overhaul, no matter how many operat-

ing hours are left, the remaining operating hours is

reset to K. Hence, for the remaining total demand

after NK, the minimum number of overhauls is

equal to DT−NK
K . As the number of overhauls has

to be a non-negative integer, the lower-bound is

(�DT
K � − N)+ and the total cost of overhauls is

(�DT
K � −N)+Co.
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A common policy that can be used as a bench-

mark for integrated-planning policies is Equal-

Sharing Policy, where the demand is always

equally shared among functional units. However,

for systems with resource dependency, the equal

sharing policy might not be feasible as it leads to

a state where all units need to be maintained at the

same time.

Theorem 3.2. If �TD
K � ≤ N , then the Equal-

Sharing Policy and doing no overhauls is optimal,

and the optimal objective value is equal to zero.

Proof. Let �TD
K � ≤ N . Then, by the property

of the ceiling function, TD
K ≤ �TD

K � ≤ N .

Therefore, TD
N = T D

N ≤ K. Therefore, if the

demand is equally shared among all the units for T

periods, (i.e., the workload will be equal to D
N per

unit per period) then the cumulative usage levels

of the units will be less then or equal to the limit

K. Since D
N ≤ D

N−1 and by Assumption 2.1-

(A1), D ≤ (N−1)C, the Equal-Sharing Policy is

feasible and leads to zero overhauls for any value

of C. Hence, it is optimal.

Since it is proven that the optimal policy and the

optimal solution are obvious when �TD
K � ≤ N ,

the following assumption is made.

Assumption 3.2. �TD
K � > N

3.2. Staircase Policy

The staircase policy aims to achieve a staircase-

looking state, where there is an equal difference Δ

between the cumulative usage levels of units and

the equal-sharing policy is feasible afterward. In

other words, the objective is to establish a feasible

approach wherein the workload is shared equally

among functional units (not under maintenance).

In Figure 1, an example of the staircase state for

N units is given, where the vertical axis denotes

the cumulative usage level of the units and the

horizontal axis denotes the unit index.

In this study, we propose to use Δ = D/(N−1)
because then the other units can fully satisfy the

demand when the first unit goes into overhaul. In

order to achieve the staircase state where Δ =

D/(N − 1), we propose a starting policy that

1 2 3 4 ...

Cumulative Usage

Unit ndex

Fig. 1. An example state with an equal staircase dif-
ference Δ between the cumulative usage of units.

uses N − 1 units equally, i.e., D
N−1 , for every

time period until a staircase state is achieved. We

suppose that the unit indexed with 1 will be used

the most, and the unit indexed with N will be used

the least. Consider that for τ1 periods, unit 1 is

used for every period, while unit 2 is used every

period but one, unit 3 is used every period but

two, etc., and unit N is used for every period

but N − 1 periods. Since the total number of

N(N−1)/2 (i.e., 0+1+. . .+(N−1)) free turns is

needed, τ1 is equal to N(N−1)
2 periods. At the end

of the τ1 periods, the cumulative usage of unit 1

is τ1
D

(N−1) = DN
2 . By this policy, the staircase

state, where y1,τ1 = DN
2 and Δ = D

N−1 can

be achieved. Note that the order of free turns of

the units until the staircase state is achieved does

not matter. However, this starting policy is feasible

only if DN
2 ≤ K. See Figure 2. In real-life

applications, the overhaul limit K is high enough

that the units will be overhauled every few years

on average. Therefore, the following assumption

can be made.

Assumption 3.3. DN
2 ≤ K

1 2 3 4 ... Unit ndex

Cumulative Usage

Fig. 2. The staircase state is achieved at the end of
period τ1.

After the staircase state is reached, the equal
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sharing policy can be used until the time t =

τ1 + τ2 at which K ′ = DN
2 + iDN for some

non-negative, integer-valued i and K − K ′ <
D
N . Combining these two conditions leads to the

following closed-form expressions for τ2 and K ′:
τ2 = �KN

D − N2

2 � and y1,τ1+τ2 = K ′ =

�KN
D − N2

2 �DN + DN
2 . See Figure 3. Note that if

T ≤ τ1 + τ2 then the staircase state of Figure 3

may not be reached before the end of the horizon.

However, since there is no overhaul in the first

τ1 + τ2 periods, then the staircase policy leads

to zero overhauls (maintenance cost) which is the

natural minimum number of overhauls and hence

optimal.

1 2 3 4 ...

Cumulative Usage

Unit ndex

Fig. 3. The staircase state where y1,τ1+τ2 = K′ at
the end of period τ1 + τ2.

Next, since unit 1 is the most used unit at cumu-

lative usage level K ′, in period τ1 + τ2 +1, unit 1

goes into overhaul and the load is equally shared

among the other units, i.e., each unit gets a load

of D
(N−1) = Δ. Then, in period τ1 + τ2 + 2, the

next most used unit goes into overhaul, and so on.

This allows, after N periods, the equal staircase

difference to be achieved and the equal-sharing

policy to be feasible again. As the workload as-

signed to the unit 1 will be equal to Δ for the next

N − 1 periods after its maintenance, it holds that

y1,τ1+τ2+N = (N − 1)Δ = D. See Figure 4.

1 2 3 ... - 1

Cumulative Usage

Unit ndex

Fig. 4. The staircase state where y1,τ1+τ2+N =
(N − 1)Δ at the end of period τ1 + τ2 +N .

As the equal sharing policy is feasible again, it

can be followed until the time τ1 + τ2 + N + τ3
at which K ′′ = (N − 1)Δ + jD

N for some non-

negative, integer-valued j and K −K ′′ < D
N . The

combination of these two conditions leads to the

following expressions of τ3 and K ′′: τ3 = �KN
D −

N� and y1,τ1+τ2+N+τ3 = K ′′ = D + �KN
D −

N�DN . See Figure 5.

1 2 3 4 ...

Cumulative Usage

Unit ndex

Fig. 5. The staircase state where y1,τ1+τ2+N+τ3 =
K′′ at the end of period τ1 + τ2 +N + τ3.

Whenever the level K ′′ is reached, the stair-

case policy orders maintenance for the next N

period, as in the case y1,τ1+τ2 = K ′. Simi-

larly, for N periods, the demand will be equally

shared among the units except for the one under

maintenance, i.e., D
(N−1) = Δ. After that, the

equal staircase difference will be achieved, and the

equal-sharing policy will be feasible again. As the

workload assigned to unit 1 will be equal to Δ

for the next N − 1 periods after its maintenance

y1,τ1+τ2+N+τ3+N = (N − 1)Δ = D. See Fig-

ure 4.

After reaching the state shown in Figure 3 at

time t = τ1 + τ2, the same overhaul scheme will

be received for every cycle of N + τ3 periods and

the number of overhauls will be equal to N for the

cycle of N+τ3 periods. At the end of every cycle,

the state of the system will become as in Figure 5.

Note that the staircase policy is feasible for every

capacity limit and, therefore, easy to adapt in real-

life systems.

Notice that for the first τ1 + τ2 periods, there is

no overhaul if K ≥ DN
2 . After that, the remain-

ing planning horizon can be divided into cycles

of N + τ3 periods. For every completed cycle

of N + τ3 periods, the number of overhauls is

equal to N . The number of completed cycles is
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�T−(τ1+τ2)
N+τ3

�. If there is an uncompleted cycle at

the end of the horizon, then the length of this cycle

is T−(τ1+τ2)−�T−(τ1+τ2)
N+τ3

�(N+τ3). Therefore,

since the overhauls are applied in the first N

periods of each cycle, the number of overhauls

for that uncompleted cycle is min{N,T − (τ1 +

τ2)−�T−(τ1+τ2)
N+τ3

�(N+τ3)}. Then, the number of

overhauls to be made as the result of the staircase

policy, which is denoted by f(N,K,D,C, T ),

can be calculated with the following closed-form

mathematical expression:

f(N,K,D,C, T ) = � T ′

N + τ3
�N

+min{N,T ′ − � T ′

N + τ3
�(N + τ3)},

where T ′ = T − (τ1 + τ2).

Theorem 3.3. The staircase policy is an asymp-

totically α−optimal policy (i.e., the ratio of the

cost of the staircase policy to the optimal cost is

not greater than α), where α = N
�KN

D �
K
D , when T

goes to infinity. Additionally, if K ′′ = K, then the

staircase policy is asymptotically optimal when T

goes to infinity.

Proof. Let the number of overhauls under the
staircase policy be f(N,K,D,C, T ), which is
a function of the parameters N , K, D, C, and
T . Let LB denote the lower-bound presented in
Section 3. Then,

f(N,K,D,C, T ) = � T ′

N + τ3
�N

+min{N,T ′ − � T ′

N + τ3
�(N + τ3)}

≤ T ′

N + τ3
N +N,

where T ′ = T − (τ1 + τ2). Recall that; LB =
(�TD

K � −N)+ ≥ TD
K −N Hence,

lim
T→∞

f(N,K,D,C, T )

LB
≤ lim

T→∞

T−τ1−τ2
N+τ3

N +N

TD
K −N

=
N

N + τ3

K

D
=

N

N + �KN
D −N�

K

D
=

N

�KN
D �

K

D

This means that the ratio of the result of the stair-

case policy to the lower-bound over the optimal

is limited by α = N
�KN

D �
K
D . This concludes the

staircase policy is an asymptotically α−optimal

policy when T goes to infinity.
For KN

D ∈ N,

1 ≤ lim
x→∞

f(N,K,D,C, T )

LB
≤ N

�KN
D �

K

D

=
N
KN
D

K

D
=

D

K

K

D
= 1

Therefore, when T goes to infinity, the result of

the staircase policy is equal to the lower-bound

and to the optimal.

4. Optimal Solution

In Section 3.2, the staircase policy is presented,

and it is proven to be asymptotically α−optimal.

However, as stated in Section 2, the planning

horizon is assumed to be finite for this study as

the lifetime of the units is limited. In order to

evaluate the performance of the staircase policy

over a finite planning horizon, a Mixed Integer

Linear Programming (MILP) model is built to find

the optimal policy. The built model is a simplified

version of the MILP model presented by Dilaver

et al. (2023). Note that, in their model, they

consider both usage-based and calendar-time-

based maintenance operations. Since calendar-

time-based maintenance operations are not within

the scope of this study, the related decision vari-

ables, cost items, and constraints are excluded.

Additionally, the number of locations is fixed as

one and the demand is equal in all periods.

5. Numerical Results

In this section, we present the results of the nu-

merical study to evaluate the performance of the

staircase policy over a set of finite-horizon prob-

lem instances. For each problem instance, every

period is equal to 1 week, and the overhaul limit

K is equal to 10000 operating hours. For perfor-

mance evaluation, 5 levels of the length of the time

horizon T , i.e., 520 (10 years), 1040 (20 years),

1560 (30 years), 2080 (40 years) and 2600 (50

years), 3 levels of N (i.e., 3, 4, and 5), 3 levels

of unit capacity per period C, i.e., 112 (16 oper-

ating hours per day), 140 (20 operating hours per

day), and 168 (24 operating hours per day), and 3

levels for the demand per period, i.e., (N − 1)C,



1000 Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

(N − 1.5)C, and (N − 2)C, are used. For every

problem instance, a fixed level of K is used. For a

total of 135 problem examples, the lower-bounds,

the optimal results obtained by solving the MILP

model and the results of the staircase policy were

compared. Due to the limited number of pages of

the article, 81 of the instances, which correspond

to the number of periods 520, 1560 and 2600, are

presented in Table 1. For each problem instance i,

the corresponding number of units N , the capacity

per unit per period C, i.e., in terms of operating

hours, the amount of demand per period D, i.e., in

terms of operating hours, and the number of peri-

ods T are specified. Besides these parameters, the

lower-bound on the number of overhauls, i.e., LB,

the number of overhauls obtained by the MILP

model, i.e., Opt, and the number of overhauls

obtained by the staircase policy, i.e., SCP , are

presented in Table 1. Also, for each instance the

gap between the Opt and the SCP is given in

the Gap% and the |Gap| columns (i.e., Gap% =

(SCP −Opt)/Opt and |Gap| = |SCP −Opt|).
In Table 1, the staircase policy led to the opti-

mal result in 30 of 81 instances (49 of 135). Also,

the lower bound is equal to the optimal result in

60 of the 81 instances (103 of 135).

For all the 135 instances, the biggest difference

between the staircase policy and the optimal pol-

icy is 25.00% in terms of Gap%, while it is 4

in terms of |Gap|. The largest relative difference

between the optimal and the lower bound is quite

low at 5.80%. In this respect, it can be said that

the lower bound is quite tight. In order to see the

performance of the staircase policy with respect

to the length of the time horizon and the number

of units, the average gap values are calculated and

presented in Table 2. For the subset of instances

with the same values for T and N , see Table 1,

where we present the values for Gap% and |Gap|.
In Table 2, Gap% and the |Gap| are presented for

all 5 levels for T (rows) and all 3 levels for N

(columns).

Table 2 shows that the average relative gap be-

tween the staircase policy and the optimal policy

is less than 10% for almost all combinations of

T and N . While the gap tends to increase as the

number of units increases, it tends to decrease for

Table 1. Comparison of the numerical results

of the optimal policy and the staircase policy.

i N C D T LB Opt SCP Gap% |Gap|

1 3 112 224 520 9 9 9 0.00% 0
2 3 112 224 1560 32 32 33 3.13% 1
3 3 112 224 2600 56 57 57 0.00% 0
4 3 112 168 520 6 6 6 0.00% 0
5 3 112 168 1560 24 24 24 0.00% 0
6 3 112 168 2600 41 41 42 2.44% 1
7 3 112 112 520 3 3 3 0.00% 0
8 3 112 112 1560 15 15 15 0.00% 0
9 3 112 112 2600 27 27 27 0.00% 0
10 3 140 280 520 12 12 12 0.00% 0
11 3 140 280 1560 41 42 42 0.00% 0
12 3 140 280 2600 70 71 72 1.41% 1
13 3 140 210 520 8 8 9 13.00% 1
14 3 140 210 1560 30 30 30 0.00% 0
15 3 140 210 2600 52 52 54 3.85% 2
16 3 140 140 520 5 5 6 20.00% 1
17 3 140 140 1560 19 19 21 10.53% 2
18 3 140 140 2600 34 34 36 5.88% 2
19 3 168 336 520 15 15 15 0.00% 0
20 3 168 336 1560 50 50 51 2.00% 1
21 3 168 336 2600 85 87 87 0.00% 0
22 3 168 252 520 11 11 12 9.00% 1
23 3 168 252 1560 37 37 39 5.41% 2
24 3 168 252 2600 63 63 63 0.00% 0
25 3 168 168 520 6 6 6 0.00% 0
26 3 168 168 1560 24 24 24 0.00% 0
27 3 168 168 2600 41 41 42 2.44% 1
28 4 112 336 520 14 14 16 14.00% 2
29 4 112 336 1560 49 49 52 6.12% 3
30 4 112 336 2600 84 84 84 0.00% 0
31 4 112 280 520 11 11 12 9.00% 1
32 4 112 280 1560 40 40 40 0.00% 0
33 4 112 280 2600 69 69 72 4.35% 3
34 4 112 224 520 8 8 8 0.00% 0
35 4 112 224 1560 31 31 32 3.23% 1
36 4 112 224 2600 55 55 56 1.82% 1
37 4 140 420 520 18 18 20 11.00% 2
38 4 140 420 1560 62 63 64 1.59% 1
39 4 140 420 2600 106 108 108 0.00% 0
40 4 140 350 520 15 15 16 7.00% 1
41 4 140 350 1560 51 51 52 1.96% 1
42 4 140 350 2600 87 88 88 0.00% 0
43 4 140 280 520 11 11 12 9.00% 1
44 4 140 280 1560 40 40 40 0.00% 0
45 4 140 280 2600 69 69 72 4.35% 3
46 4 168 504 520 23 23 24 4.00% 1
47 4 168 504 1560 75 76 76 0.00% 0
48 4 168 504 2600 128 128 128 0.00% 0
49 4 168 420 520 18 18 20 11.00% 2
50 4 168 420 1560 62 62 64 3.23% 2
51 4 168 420 2600 106 107 108 0.93% 1
52 4 168 336 520 14 14 16 14.00% 2
53 4 168 336 1560 49 49 52 6.12% 3
54 4 168 336 2600 84 84 84 0.00% 0
55 5 112 448 520 19 19 20 5.00% 1
56 5 112 448 1560 65 69 70 1.45% 1
57 5 112 448 2600 112 114 115 0.88% 1
58 5 112 392 520 16 16 20 25.00% 4
59 5 112 392 1560 57 57 60 5.26% 3
60 5 112 392 2600 97 99 100 1.01% 1
61 5 112 336 520 13 13 15 15.00% 2
62 5 112 336 1560 48 48 50 4.17% 2
63 5 112 336 2600 83 83 85 2.41% 2
64 5 140 560 520 25 25 25 0.00% 0
65 5 140 560 1560 83 84 85 1.19% 1
66 5 140 560 2600 141 145 145 0.00% 0
67 5 140 490 520 21 21 25 19.00% 4
68 5 140 490 1560 72 73 75 2.74% 2
69 5 140 490 2600 123 125 125 0.00% 0
70 5 140 420 520 17 17 20 18.00% 3
71 5 140 420 1560 61 61 65 6.56% 4
72 5 140 420 2600 105 105 105 0.00% 0

an increasing number of periods. Since the service

life is typically 20 years or more for the fleets of

vessels and aircraft, it is a practically important

insight that the average gap is always less than

7% for all 3 levels of the number of units for the
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i N C D T LB Opt SCP Gap% |Gap|

73 5 168 672 520 30 31 35 13.00% 4

74 5 168 672 1560 100 102 105 2.94% 3

75 5 168 672 2600 170 175 175 0.00% 0

76 5 168 588 520 26 26 30 15.00% 4

77 5 168 588 1560 87 88 90 2.27% 2

78 5 168 588 2600 148 150 150 0.00% 0

79 5 168 504 520 22 22 25 14.00% 3

80 5 168 504 1560 74 74 75 1.35% 1

81 5 168 504 2600 127 127 130 2.36% 3

Table 2. Average of gaps between the optimal policy

and the staircase policy.

N 3 4 5

T |Gap| Gap% |Gap| Gap% |Gap| Gap%
520 0.333 4.62% 1.333 8.89% 2.778 13.81%
1040 0.333 1.52% 1.333 4.12% 2.889 6.78%
1560 0.667 2.34% 1.222 2.47% 2.111 3.10%
2080 0.778 1.80% 0.889 1.48% 1.667 2.06%
2600 0.778 1.78% 0.889 1.27% 0.778 0.74%

planning horizons of 20 years and longer.

6. Conclusion

In this study, a problem of integrated planning for

usage-based maintenance and load-sharing under

resource dependence is introduced. The problem

considers making the large-scale maintenance de-

cisions of units in a fleet and the load sharing

decisions of the units simultaneously, with the aim

of minimizing the total cost of maintenance while

ensuring demand satisfaction. For this purpose,

a practically applicable policy referred to as the

staircase policy is proposed. The performance of

this policy is evaluated by comparing its results

with a tight lower-bound and the optimal policy

obtained by an MILP model. The results show

that the staircase policy can generate near-optimal

solutions with an average gap lower than 1.89%

for the instances with a planning horizon longer

than 30 years. The asymptotic performance of the

staircase policy has also been studied. It is proved

that the policy is asymptotically near-optimal.

Moreover, it is shown that for the special case of
KN
D ∈ N, the staircase policy is optimal when the

time horizon is infinite.

Note that this study specifically focuses on

problems in which the demand is known in ad-

vance and remains constant throughout the plan-

ning horizon. The cases involving varying or

stochastic demand have been identified as poten-

tial future research directions.
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