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Markov models are a promising tool regarding the assessment of availability, safety, security, and reliability of 
autonomous driving functions. The paper addresses challenges regarding the overall system functional and static 
modeling and related overall Markov diagram design options. To this end, the model space is presented, extending 
the main functions consisting of extended sensory system, decision and control, and vehicle platform manipulation. 
Sample transition models from literature are used. It is shown how to color-label overall Markov system product 
states in terms of the level of their criticality, independent of the multiplicity of failures. This is used to model the 
effect of structural and functional redundancies, e.g., of redundant sensors and sensors of different technology. The 
modeling approach allows to compare the effect of redundancy options on a systemic level, as well as to identify 
the need for further aggregation or subdivision of Markov states or refinement of the transition modeling and 
simulation approach. For instance, in terms of providing statistical assessment of historic events or by using 
simulation results of specific autonomous driving scenarios, e.g., interaction with vulnerable road users in case of 
darkness, bad weather, and partial sensor degradation. The paper presents Markov modeling results with a focus on 
modeling of redundancies of sensors. 
 
Keywords: Functional and structural architecture, Markov model, safety and reliability analysis, fail-operational,  
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1. Introduction 
Autonomous vehicle (AV) architectures 
including interfaces with the environment are 
increasingly dominated by software functions. 
Architectures rely on redundant self-monitoring 
subsystems. Sensor technology types, their 
capabilities and multiplicities are increasing, 
including camera (Weber et al. 2023), lidar 
(Abbasi et al. 2023), radar (Zhou et al. 2022), and 
ultrasound or even audio (Furletov et al. 2022).  

To understand which subsystems are 
relevant for providing an autonomous driving 
(AD) function, within classical system analysis, a 
stepwise approach is conducted, e.g. consisting of 
the following tabular and matrix analysis steps:  

(i) System structural analysis to identify 
subsystems. (ii) Generation of subsystem 
dependency matrix (design structure matrix, 

DSM) (Felgen et al. 2005) to determine 
subsystems that are related with each other.  
(iii) System functional analysis to identify 
functions and subfunctions on system level (see 
e.g. short overview in (Halbe 2021)).  
(iv) Generation of function dependency matrix to 
determine subsystems that are related with each 
other. (v) Matrices to determine which 
subsystems are needed for which function.  
(vi) Matrices to determine which subfunctions are 
needed for system functions.  

The question that arises is which subsystems 
and subfunctions should be considered for 
modern autonomous systems. The present paper 
will provide a structural-functional analysis of 
modern autonomous driving architectures by 
reviewing recent publications and conducting 
mainly steps (i) and (iii). Also, steps (iv) and (v) 
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will be conducted to identify the main 
dependencies of functions on system level on 
subsystems and subfunctions. When compared to 
the systemic functional resilience approach in 
(Fehling-Kaschek et al. 2019) (Häring et al. 
2021), the presented steps are closer to classical 
system design analysis approaches as provided in 
(Browning 2001) (Eickhoff 2009) (Browning 
2016) (Häring 2021). 

A further challenge is the qualitative 
assessment of safety of autonomous driving 
functions assuming that it is known which 
subsystems and functions contribute. A natural 
transition from knowing which subsystems 
constitute to a system or which subfunctions 
constitute to a system for an assessment on system 
level is to design a product state space and to 
verify for which combinations of subsystem states 
the states of the overall system become critical. 
For instance, if sufficient sensory subsystems fail 
it can be concluded that a given autonomous 
driving function will fail. The system behavior 
with dependence on the subsystems or 
subfunctions can be summarized in a system truth 
table (see e.g. (Rahmat et al. 2006) (Thornton et 
al. 2014)). The present paper will provide a truth 
table for the sensing system of an autonomous 
driving system.  

For quantitative assessment an option is to 
use Markov modelling and use the truth table for 
applying a color-labeling, i.e. labeling of all 
overall state space elements on system level. The 
challenge is the state-space explosion issue and 
hence exponentially increasing computation 
times. This holds true even more than in the case 
of product state identification of autonomous 
functions and their color-labeling. The latter can 
be conducted using automatic application of rules. 
The present paper will explore if for simple 
exponential transition models, state space 
explosion is already a challenge for the modelling 
of autonomous driving functions.  

To this end, an autonomous driving sensing 
subsystem will be simulated without 
environmental information. Based on this 
example a tabular estimate will be given on the 
number of states necessary on system level to 
model autonomous driving functions using 
extended Markov models including propagation 
of environmental information (scenario or setting 
information) as proposed in (Häring et al. 2022).  

The paper is organized as follows. Section 2 
gives further background on methodology to 

determine a representative functional-structural 
architecture of autonomous vehicles and in an 
informed way a Markov diagram from this 
information as well as its numerical simulation. 
Section 3 presents and discusses the functional-
structural architecture proposed. Section 4 
provides the Markov diagram and a truth table 
excerpt of a sample sensing system of an 
autonomous vehicle and sample simulation 
results along with estimates on necessary states 
for overall abstract extended Markov autonomous 
vehicle modelling and simulation. Section 5 
offers a conclusion and an overview of future 
directions.  

2. Methodology 
Based on the functional structural analysis, within 
a classical Markov approach, the next steps are, 
e.g., (vii) Definition of product state space, i.e. 
subsystem identification and definition of their 
states. Development of a truth table on system 
level. (viii) Markov diagram generation and 
Markov state transition identification (allowed 
transitions). (ix) Transition modelling and 
quantification. (x) Quantitative Markov model 
generation (initial conditions and equation 
systems). (xi) Numerical state space propagation 
and computation of safety and reliability 
quantities. (xii) Visualization, evaluation, and 
assessment. (xiii) Identification of improvement 
options.  

The paper mainly contributes to the steps (i) 
and (iii) by presenting semi-formal diagrams, and 
to steps (vii) to (xiii) by presenting and explaining 
the used Markov diagram structure, the transition 
models used, and the equation system. For the 
latter steps, mainly results are presented and 
discussed in terms of Markov state space-time 
histories and probability distributions of states at 
given assessment times. Note that the transitions 
from steps (v) and (vi) to steps (vii) to (ix) are not 
formalized.  

The scalability of the approach is argued in 
terms of how to generalize the example and use a 
tabular assessment of state space increase 
estimates.  

3. Functional-structural architecture of AVs  

3.1. Comparison of AD architectures in 
literature 
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ISO 26262 (Functional Safety – Road vehicles) 
(Kirovskii and Gorelov 2019) demands a 
quantitative assessment of vehicle safety. To 
enable such assessments, it is necessary to 
understand the architecture of the vehicle in full 
detail. Therefore, AV functional architecture is a 
central point of discussion in many studies and 
standards.  

For instance, Novickis et al. (2020) provide 
a viable functional architecture for an example of 
AV functions that include lane keeping, parking 
assistance, or autopilot driving mode on the 
highway. This architecture also shows which 
sensors would be necessary for each of these 
functions. With a little less detail in the relations 
between sensors and functions, Munir et al. 
(2018) also present an AV architecture with a 
similar classification of high-level functionality 
(i.e. sensors, perception, planning, and control). 
In this case, the system is further divided into two 
main parts: software and hardware. The software 
part includes the control block with the 
localization, detection, motion, and mission 
planning modules, while the hardware part 
includes all the actuators.  

Along the same lines as the previously 
mentioned papers, Serban et al. (2018) propose an 
AV architecture with a different level 
classification of functions. In their approach, they 
distinguish between functional components, class 
of components, and sub-class of components. It 
provides high-resolution data management 
systems consisting of different elements like 
sensor abstraction, data management, actuator, 
and safety management. In addition, data 
management support functions are given (e.g. 
map database). This provides input for the main 
layer of the proposed functional and structural 
architectures. 

Often papers that cover AD functional and 
structural architecture have a focus on the 
assessment of the reliability, safety, and security 
of AV. In those cases, they show how each 
component affects the overall safety of the 
vehicle. An example of such an approach is 
Bhavsar et al. (2017), who conduct risk analyses 
by risk identification, risk estimation, and 
evaluation of a fault tree model.  

Sagar Behere and Törngren (2015) provide 
a functional and structural data flow architecture 
with a high level of detail of how vehicle 
movements are defined through trajectory 
execution with the help of decision and control 

and other functions like sensing, localization, 
semantic understanding, and sensor fusion.  

The advantages of utilizing a multi-class 
driverless vehicle fleet for mobility on demand 
have been discussed and demonstrated through 
successful experimental operations in a proposed 
functional architecture in the paper by Pendleton 
et al. (2016).  

Functional architecture of autonomous 
driving with a focus on different functional sub-
systems and how the data is transferred between 
these systems is explained in detail by Ahangar et 
al. (2021).  

Novickis et al. (2020) proposed a functional 
architecture for autonomous driving vehicles with 
perception, sensors with localization of the world 
model, and how the vehicle platform 
manipulation is achieved by trajectory generation.  

In the paper by Tas et al. (2016), a robust 
structure for future system architectures is derived 
by summarizing the existing system architectures 
from the current literature and investigating them 
with regards to their robustness against 
measurement inaccuracies, failures, and 
unexpected evolution of traffic situations.  

A holistic architecture for autonomous on-
road motor vehicles is proposed by Matthaei and 
Maurer (2017), who extend existing architectures 
by systematic integration of external data, such as 
map data and V2X (vehicle to everything) 
information. The consideration of bidirectional 
communication also allows the implementation of 
automated map updates. 

Shah (2019) describes an award-winning 
functional architecture of AV according to 
Autonomous Vehicle Competition in Korea. In 
this architecture, a basic layout of all the critical 
sensors and systems leading to the actuation and 
movement of the vehicle is shown.  

In Table 1 a summary of the reviewed 
publications is presented with the components or 
functions that each study includes.  

3.2. Functional and structural architecture 
concept 
According to (Collin et al. 2020), functional 
architecture is a system of interconnected tasks 
that communicate through messages. It can be 
represented as a graph, with tasks as nodes, and 
messages as edges. The design of this architecture 
can be informed by using techniques from 
network analysis, such as functional dependency 
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network analysis. Thus, functional architecture is 
a design pattern that emphasizes the separation of 

 

Table 1. Main functions and subsystems of autonomous driving architectures. 

Function or component Muni
r et 
al. 
2018 

Ser-
ban et 
al. 
2018 

Behere 
and 
Törn-
gren 
2015 

Pen-
dleton 
et al. 
2016 

Ahan-
gar et 
al. 
2021 

Novi-
ckis et 
al. 
2020 

Tas et 
al. 
2016 

Bhav-
sar et al. 
2017 

Mat-
thaei 
and 
Maurer 
2017 

Shah 
2019 

Sum 

Perception X X X X X X X X X X 10 
Sensors X X X X X X X X X X 10 
Sensor data fusion 

 
X X X X X X X X X 9 

Localization X X 
 

X X X X X X X 9 
Semantic understanding 

 
X X X X X X 

 
X X 8 

Detection 
 

X X X X X X 
 

X 
 

7 
Decision and control X X X X X X X X X X 10 
World model 

 
X X X 

 
X X X X 

 
7 

Trajectory generation X X X X X X X X X 
 

9 
Safety management  

 
X X 

 
X 

  
X X 

 
5 

Vehicle platform 
manipulation 

X X X X X X X 
 

X X 9 

Trajectory execution X X X X X X X X 
 

X 9 
Platform stabilization 

 
X X X 

 
X 

 
X X 

 
6 

Vehicle control X X X X X X X X X X 10 
Actuation X X X X X X X 

 
X X 9 

Hardware components 
(steering, brake, 
acceleration, etc.) 

X X X X X X X 
 

X X 9 

 
concerns into independent functions. In 
functional architecture, the application logic is 
organized around functions that perform specific 
tasks, rather than components that represent each 
task and their interactions. 

In contrast, the physical architecture 
includes components such as processors and data 
buses. The structural data flow architecture 
focuses more on each component and how the 
data is transferred between them for the system to 
function automatically.  

A similar approach is to use system 
functional trees and system structural trees as e.g. 
proposed within standards like IEC 61508, ISO 
26262 and SOTIF ISO/PAS 21448 for 
documenting sufficient system knowledge before 
providing a generic functional and structural 
architecture (Kirovskii and Gorelov 2019).  

3.3. Generic functional-structural architecture 
Based on Table 1 the primary functional elements 
of the autonomous driving system's motion 
control component are divided into three major 
categories. This agrees with the main functions 
used in (Behere and Törngren 2015) as well as all 
relevant papers identified (Ahangar et al. 2021; 
Shah 2019; Serban et al. 2018).  

These groups are: Perception of the outside 
environment or context in which the vehicle 
operates with external and internal sensors, 
including interfaces and generalized sensors like 
cameras, lidar, radar, and GPS. Decision and 
control of the vehicle's long- and short-term 
trajectory planning based on the perceived 
external environment. Vehicle platform 
manipulation, primarily through the actuation of 
the ego vehicle to attain the desired motion. 

In Fig. 1, sub-functions of these main 
functions are given which cover current modern, 
and expectable future designs by comparing the 
most recent publications. This architecture is a 
synthesis of the different approaches analyzed in 
section 3.1 and aims to provide a comprehensive 
representation of functional architectures 
presented in the research papers. It contains the 
highest resolution proposed to be used in building 
the Markov models. This architecture focuses 
mainly on the functions and sub-functionalities of 
AVs.  

The structural architecture is presented 
in Fig. 2. It focuses more on the structural 
resolution of data flow showing the main 
subsystems and components and how the 
information is transferred along the components.  
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g p

 
Fig. 1. Overall functional architecture of the 
autonomous driving vehicle.  

This allows to identify which sub-systems and 
components are used to realize system functions. 
For instance, as Table 1 shows, functionality 
perception has been part of the AV architecture in 
the papers (Ahangar et al. 2021; Behere and 
Törngren 2015; Bhavsar et al. 2017; Pendleton et 
al. 2016; Serban et al. 2018). In a similar way, it 
is also possible to trace which functional 
architecture has been already used in literature 
and also where further information can be found.  
 

 
Fig. 2. Proposed structural data flow architecture of the 
autonomous driving vehicle.  

4. Markov modelling and simulation of AV 
sensor system 

4.1. Scaling and color-labeling Markov models  
A 32-state prototype Markov model for the 
sensing subsystem can be developed comprised of 
five generalized sensors including the camera 
system, radar system, lidar system, GPS, and V2X 
communication system. If for each of the 5 sensor 
systems only two states are allowed, namely 
operational and failed, the state space cardinality 
is given by .  

However, the multiplicity (number of 
sensors) of each sensor technology and their 
perception direction is not considered. A 
minimum extension is to consider 3 forward and 
backward sensor systems for each technology. 

This results in a state space of 
.  

In a similar way, other subsystem 
redundancies can be considered, e.g. further 
resolving the forward sensor system of a given 
technology. Furthermore, more   states per 
subsystem or subfunction could be considered 
than only operation and failed, e.g. adding 
degraded operational.  

The color-labeling of system states needs to 
consider all subsystem or subfunction states. 
Based on the discrete finite product state, the 
labeling is conducted, e.g. (0,1; 0,1; 1,1; 1; 1) 
could label that the forward camera and radar 
system is degraded in forward direction, and only 
the lidar sensor system is fully available. This can 
be interpreted as fail operaional on system level.  

4.2. 256-state Markov Sensor model  
 

 

 
Fig. 3. Complex 256-state Markov model for sensor 
systems with added redundancy.  
 
The 256-state Markov model in Fig. 3 represents 
various failure scenarios for a system comprised 
of 8 different components: Camera-1/-2, Radar-
1/-2, LiDAR-1/-2, and GPS-1/-2. The model is 
relatively large, comprised of  
states, each representing to a specific failure 
scenario. The color-labeling of system states is 
indicated in Fig. 3. 

The model accounts for single, double, 
triple, and multiple component failures. The 
model also includes absorbing states (red) when a 
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set of sensors of the same type is failed. This 
double sensor failure leads to the complete system 
failure, from which it cannot recover. Hence, e.g. 
state 255 is never reached.  

Note that each Markov transition only 
implies the failure or repair of a single 
component, e.g. Camera-1.  

5.3. Quantification and time-propagation of the 
model 
For quantification of the model, the initial 
conditions are to start at time  h in state 
0 (all subsystems operational) of Fig. 3. Table 2 
gives sample transition rates based on the sample 
rates used in (Häring et al. 2022). This allows to 
determine the constant transition rate matrix (Q-
matrix) for a continuous finite state space Markov 

model of the form , where 

 is the time 
depend state vector and , see e.g. 
(Rausand 2013). The time propagation is 
conducted using adaptive Python scipy.odeint 
integration routine until  with an 
integration relative failure tolerance of 

. 

Table 2. Sample exponential failure and repair 
rates of sensor model. 

Failure rates ( ) 
Camera 1   
Camera 2   

LiDAR 1   
LiDAR 2   

Radar 1   

Radar 2  

GPS 1   

GPS 2   

Repair rates ( ) 
Same for all components  

5.4. Reliability and safety quantities results 
discussion 
The model can be used to analyze the probability 
of being in a Markov sate at any given time (Fig. 
4.A), to determine the dominating (absorbing) 
asymptotic states (Fig. 4.B, Fig. 4.D), and to 
determine the overall system reliability (Fig. 4.C).  

 
Fig. 4. Simulation results for the 256-sate redundant 
Markov model. A. Time evolution of the state 
probability distribution. B. State distribution at the end 
of the simulation. C. Reliability of the system over 
time. D. Most dominant states at the end of the 
simulation and their respective failed components.  

It can be used to assess the impact of 
individual component failures on the system 
performance. In fact, the very high failure rates 
assumed for Camera-1 and Lidar-1 in Table 2, e.g. 
due to dirt affecting some front sensors, result in 
the results of Fig. 4. It shows that the nearest 
natural absorbing state is reached, e.g. additional 
failure of Camera-2 or Lidar-2, in case of pre-
damage, degradation or weak initial performance 
sub-systems of Camera-1 and LiDAR-1.  

The approach allows for the identification of 
critical components and the development of 
strategies to mitigate the propagation of failures, 
e.g. by increasing multiplicity of sensors that are 
not sensitive to identified critical failure root 
cause, e.g. rain or snowfall.  

5. Conclusions 
The paper demonstrated the scalability of the 
Markov modeling of autonomous vehicles if only 
the resolution of vehicle technical system is 
considered (sensors, hardware, (embedded) 
software, interfaces, actuators, and chassis). This 
can be inferred since as described for the 32-state 
(see section 4.1) and 256-state model (see section 
4.1) in a similar way 4-state (e.g. using the 3 
overall Markov state color-labeling of Fig. 3) and 
8-state (e.g. using the 3 main functions on system 
level introduced in Fig. 1) and of course higher 
order state models can be constructed based on 
the structural-functional models introduced (Fig. 
1 and Fig. 2).  
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The models can be understood as 
refinements (higher resolution) or abstractions 
(lower resolution) of each other showing in a non-
formal way the scalability of the approach. 
Regarding control of sate-space explosion Table 
3 gives an estimation of the maximum state space 
dimension needed when using the structural-
functional model given in Fig. 1 at different 
resolutions.  

Table 3. Sample Markov state space dimensions.  

Type of subsystems/ -
functions  

Subs./ -
funct. 

State 
reso-
lution  

Markov 
sates 

Main functions: 
Perception, decision 
and control, 
Actuation  

3 2 to 4 8 to 64 

Consideration of on 
average ca. 3 
subsystems/ -
functions per main 
function 

9 2 to 4 
512 to 

262,144 

Consideration of on 
average ca. 5 
subsystems/ -
functions per main 
function 

15 2 to 4 
32,768 to 

 

Maximum resolution 
of Fig.1 in total 26 
subsystems/-
functions  

26 2 to 4 
to 
 

 
Hence state explosion is an issue (e.g. when 

considering that Lenovo Thinkpad laptop with 
Intel i7-4600 CPU and 8GB RAM. ca. 10,000 
states are a limit when asking for simulation time 
of ca. 1 h) even if, as in the present case for the 
256-state model, (a) the simulation does not need 
to consider non-reachable states, which reduces 
the total number of states that need to be 
propagated, (b) minimum state resolution of 2 is 
used, and (c) non-technical subsystems or 
subfunctions are not considered, e.g. driver, 
environment, other (vulnerable) road users.  

This allows concluding that controlled 
abstraction and refinement of the Markov model 
for autonomous driving functions is a key 
capability that needs to be employed, e.g. by 
focusing on the sensory system only as conducted 
in the present approach.  

Next steps could include showing in a 
formal way the scalability by requiring more 
defined relations between resolution levels, e.g. 
more abstract system boundaries are never lifted 
when going to finer resolution, and quantification 
approaches for abstraction and refinement. Also, 

the relation between a functional-structural semi-
formal (graphical) model and discrete product 
state space could be formalized, as well as the 
visualization of color-labeling rules, e.g. using 
SysML/UML.  
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