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Within the realm of protection of infrastructures, it is essential to quickly identify potential risks in case of safety
or security incidents. When alarms are triggered, the full extent of threats or damages is sometimes not clear.
For example, unknown hazardous materials may be released or the structural integrity of a building could be
compromised. In such cases, reconnaissance activities are required. Here, we study how the usage of autonomous
systems equipped with portable sensors may support scenario identification and thus might help to decrease risks
for emergency response personnel during scenario exploration. The process of reconnaissance can be viewed as an
optimisation problem with many different criteria that affect the selection process of an optimal route through a
location. Besides the gain in information about the situation, other criteria such as the safety of the autonomous
system should be considered. As these criteria can be conflicting, the application of multi-criteria decision analysis
(MCDA) methods might proof beneficial. In this work, we present a first approach to optimise the observation
strategy in emergency response. A Bayesian network is established to infer key aspects of the situation based on
new information provided by the sensors of the autonomous system. A sequential multi-criteria decision analysis is
performed based on predefined criteria and current information obtained from the Bayesian network. The approach
is illustrated by a simplified generic case study of a small building with multiple rooms. First results show that even
simplified situations may lead to complex decision-making processes.
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1. Introduction

Securing critical infrastructures in case of sudden

disruptions is crucial to ensure the supply of goods

and services that provide stability in our society

(Lichte et al., 2022). When critical infrastructures

face threats or disruptions, autonomous systems,

such as robots or drones, may be employed not

only to monitor the correct function of the infras-

tructure but also to intervene in case of an emer-

gency (Milana, 2022). Dangerous conditions, such

as the presence of unknown hazardous substances,

can threaten emergency response personnel, af-

fecting their work or even endanger their lives

(Rosas et al., 2020). In such situations, robotic

systems can be deployed to support firefight-

ers and first responders in their emergency task

(Schneider and Wildermuth, 2017). Robotic sys-

tems can perform several tasks, such as extinguish

fire, search for hazardous material or improve sit-

uation awareness (Timotheou and Loukas, 2009;

Rosas et al., 2020; Schneider and Wildermuth,

2017). It can be necessary to observe a variety of

locations at an emergency site to gain a compre-

hensive picture of the situation and thus enhance

situation awareness. These locations of special

interest might be considered as checkpoints which

need to be visited during the process of scenario

identification. This process aims to identify the

current situation and immediately pending events,

i.e. contributes to enhance situation awareness

(Mentges et al., 2023). Several criteria can be

considered when deciding on the order in which

a robot should approach these checkpoints. For

example, the safety of the robot or the distance to

the next checkpoint can be important, and in some

cases, conflicting criteria.

In this work, we present a first approach to

support such decisions. A simple case study com-

posed of a building with three rooms is introduced.

A Bayesian network is set up to estimate the prob-
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ability of fire in predefined checkpoints that are

distributed over these rooms. Based on observa-

tions of the robot at the respective checkpoint, in-

ference in the Bayesian network is performed (see

Schneider et al. (2022) for more details on risk

scenario identification based on observations). In

order to decide which checkpoint the robot should

visit next, a multi-criteria decision analysis is ap-

plied based on the available knowledge in that

moment. When another checkpoint is observed, an

additional multi-criteria decision analysis is per-

formed until all checkpoints have been visited. In

the following, first, the main methods used in the

approach are introduced. Second, the approach is

outlined based on the aforementioned case study.

Third, the results and limitations are discussed,

followed by a conclusion and outline of future

work.

2. Methods

In this section, Bayesian networks (BNs) and

multi-criteria decision analysis (MCDA) are intro-

duced. Special emphasis is placed on the MCDA

method called PROMETHEE II which is used in

this work.

2.1. Bayesian Networks

Bayesian networks are probabilistic graphical

models based on a directed acyclic graph (DAG)

(Pearl, 1985). A BN is composed of nodes that

represent variables and edges which represent

their probabilistic dependencies. To build a BN,

three sequential tasks are performed: (1) variables

are identified as well as their possible values, (2)

the DAG is set up, and (3) probability values

are determined to quantify the relations between

the variables (Druzdzel and van der Gaag, 2000).

Given an observation, BNs enable a prediction of

possible causes and vice versa (Ramı́rez-Agudelo

et al., 2021) making them a powerful tool to per-

form inference based on evidential findings.

2.2. Multi-Criteria Decision Analysis

Multi-criteria decision analysis deals with deci-

sion problems which consist of different alter-

natives and multiple, often conflicting, criteria.

Multi-attribute decision-making (MADM) is a

subfield of MCDA in which only discrete alter-

natives are considered (Hwang and Yoon, 1981).

The set of alternatives A = {a1, ..., ai, ..., an}
and the set of criteria G = {g1, ..., gj , ..., gk}
are distinguished (Brans and Smet, 2016). Thus,

MADM decision problems can be expressed by a

n×k matrix M (Geldermann and Schöbel, 2011).

The element of the matrix gj(ai) is the evaluation

of the alternative ai with respect to the criterion gj
(see Eq. (1)).

M :=

⎛
⎜⎝
g1(a1) · · · gk(a1)

... gj(ai)
...

g1(an) · · · gk(an)

⎞
⎟⎠ (1)

Various methods can be applied to perform the

MCDA (see Kabir et al. (2014) for a review

on MCDA methods). In this work, we focus

on the outranking approach preference ranking

organization method for enrichment evaluations

(PROMETHEE) that is based on pairwise compar-

isons of the alternatives (Brans and Smet, 2016).

In PROMETHEE, the decision maker has to as-

sign a preference function to each criterion. Six

types of preference functions can be applied. The

pairwise comparison of alternative ai and alterna-

tive ax with respect to the preference function Pj

is denoted by Pj(ai, ax). Furthermore, the deci-

sion maker has to determine a set of suitable crite-

ria weights Ω = {ω1, ..., ωj , ..., ωk}. In addition,

the sum of the criteria weights must be 1. Two

outranking flows are computed for all alternatives

of the decision problem. Equation (2) shows the

calculation of the positive outranking flow φ+(ai)

of the alternative ai.

φ+(ai) =
1

n− 1

k∑
j=1

∑
ax∈A

Pj(ai, ax)ωj (2)

The negative outranking flow φ−(ai) of the same

alternative ai is shown in Eq. (3).

φ−(ai) =
1

n− 1

k∑
j=1

∑
ax∈A

Pj(ax, ai)ωj (3)

The method PROMETHEE II is used to obtain a

complete ranking of alternatives by calculating the

net flow of each alternative. Equation (4) shows
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the net flow φnet(ai) of the alternative ai.

φnet(ai) = φ+(ai)− φ−(ai) (4)

The net flow of the alternative ai lies in the inter-

val φnet(ai) ∈ [−1; 1]. A net flow φnet(ai) >

0 means that the alternative ai is outranking

the other alternatives. In contrast, a net flow

φnet(ai) < 0 means that the alternative ai is

outranked by the other alternatives.

3. Approach

In the following, the approach to a sequential

MCDA supporting the optimization of observa-

tion strategy is presented. The goal of this work

is to support the strategy of selecting a route

through a building under multiple criteria such as

the safety of the robot or the expected gain of

information in specific areas of the building. A

Bayesian network is used to estimate the probabil-

ity of specific aspects of the situation, such as the

probability of fire in predefined areas. Each time

the robot reaches a new checkpoint, the values of

the respective probabilistic variables of the BN

are updated based on the observations provided

by the sensors of the robot. MCDA is applied to

support the decision of which checkpoint to go to

next. Thus, MCDA is applied each time the robot

reaches a new checkpoint.

In order to introduce the approach, first, the case

study is presented. Second, the resulting Bayesian

network is described, followed by the criteria that

are considered to perform the MCDA. In Section

4, the approach is applied to two different pref-

erence types (e.g. two stakeholders with different

preferences regarding the weights of the decision

criteria) resulting in two exemplary paths of the

robot.

3.1. Case Study

The aim of this case study is to illustrate the

approach using a simplified example. The concep-

tual study consists of a simplified building of a

production company. The building is divided into

three rooms: the production, a storage room and

a hallway which connects the other rooms. The

storage room has about twice the floor space of the

production. The main entrance (marked with an S)

is located at the hallway. An additional emergency

exits is at the left side of the storage room. A

total of five checkpoints are distributed over both

main rooms, two in the production and three in the

storage room. These exemplary checkpoints are

selected in a way that a large area of both rooms is

covered when observing all checkpoints. Figure 1

shows the floorplan of the building including the

main entrance S, the emergency exit as well as the

five checkpoints I-V. The distances between the

checkpoints and the main entrance are shown in

Eq. (5). The sensors of the robot are assumed to be

capable of detecting fire (high temperatures) and

smoke from a short distance. This allows fire and

smoke to be detected at each checkpoint and in

the near surrounding area, but not from any further

distant location.

In this case study, we assume that fire is located

at checkpoint IV, while smoke has spread over

checkpoints III and IV.

III

III

V

IV

S

Fig. 1. Floorplan of the case study. The case study is
composed of three rooms, the production (bottom left),
a storage room and a small hallway connecting both
rooms. Dots indicate the checkpoint for the robot I-V
as well as the main entrance S. The emergency exit is
located at the left side of the storage room.

3.2. Bayesian Network of the Case Study

The BN (Figure 2) is used to estimate (1) the prob-

ability of fire in each checkpoint (nodes Fire in I-

V) and (2) the probability of burning hazardous
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material in each checkpoint (nodes B.H.M in I-V).

The nodes Burning Hazardous Material (B.H.M)

in I-V are child nodes of the respective node Fire

at the checkpoint as well as a node Hazardous

Material (H.M.) indicating the probability of the

existence of hazardous material in the area of the

checkpoint. Additionally, each Fire node is a par-

ent node of the respective Smoke node. Smoke and

fire can be detected by the robot. The Smoke nodes

are linked by a Smoke Alarm node. This node has

three states: Single Alarm, Distributed Alarm and

None. Thus, it can be distinguished whether only

a single alarm triggered the emergency response

or several alarms in the same building. In case of

a single alarm, it is more likely that fire is present

in only one room. Subsequently, all Fire nodes are

connected by the node Fire in both Rooms which

indicates the probability that a fire has spread into

the second room.

Given an observation on one of the Fire or

Smoke nodes, the beliefs on all other conditional

nodes in the BN are updated. Prior probabilities

of the occurrence of hazardous material at the

checkpoints are e.g. provided by local employees.

3.3. Criteria

Four criteria are considered in the case study for

the MCDA. (1) The Distance to the next check-

point. Assuming a constant speed of the robot,

the distance is proportional to the time that is

required to reach the next checkpoint. This crite-

rion is to be minimized. The corresponding values

for the distance between checkpoints are taken

from Eq. (5). (2) The Safety of the robot itself,

which is linked to the estimated probability of

fire in a certain checkpoint (see nodes Fire in I-

V in Figure 2). In order to enhance the safety of

the robot, checkpoints with a lower probability of

fire are to be selected according to this criterion.

(3) The Gain of information about the condition

of the emergency exit. In order to quickly gain

knowledge about the accessibility of the emer-

gency exit, the robot should visit checkpoint V

early on its route through the building. Therefore,

this criterion aims to minimise the distance to

checkpoint V during the process of selecting the

next checkpoint. The values of the distance to

checkpoint V is taken from Eq. (6). (4) The Gain

of information about burning hazardous material,

which is linked to the nodes named B.H.M. I-V of

the respective checkpoints being in state True (see

Figure 2).

These criteria can be mutually conflicting. For

example, preferring Safety-criterion would hinder

going to the checkpoint where a fire is expected

with the highest probability. The Information gain

about burning hazardous material on the other

hand, would support to go to the checkpoint with

a high probability of fire, if preferred.

Distance =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

S I II III IV V

S 0 5 12 16 26 28

I 5 0 10 6 20 22

II 12 10 0 16 30 32

III 16 6 16 0 14 16

IV 26 20 30 14 0 30

V 28 22 32 16 30 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(5)

Distance to V =
( I II III IV V

22 32 16 30 0
)

(6)

4. Results

In this case study, an exemplary fire scenario with

a distribution of fire and smoke is assumed. In the

considered exemplary scenario, a fire occurs in the

area of checkpoint IV, smoke has spread over the

areas of checkpoint III and IV. Furthermore, the

smoke detectors indicate a single smoke alarm, i.e.

the node Smoke Alarm is in state Single Alarm.

In order to compute results, additional infor-

mation are required. First, the MCDA method is

to be selected. In this approach, PROMETHEE II

is applied (see Section 2.2). In order to do so, a

preference function is selected for each criterion.

Preference function type III and V (see (Brans

and Smet, 2016)) are selected in this example.

For both, threshold values (q-value and p-value

as shown in Figure 3) are determined. In case

of a q-value equal to zero, preference function

type III and V are equivalent. An overview of

the selected values for each criterion is shown in
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Smoke
Alarm

Smoke in
Storage

Smoke in
Production

Smoke in I Smoke in II Smoke in III Smoke in VI Smoke in V

Fire in I Fire in II Fire in III Fire in IV Fire in V

Fire
Production

Fire Storage

Fire in both
Rooms

H.M.
I

B.H.M.
I

H.M.
II

B.H.M.
II

H.M.
III

B.H.M.
III

H.M.
IV

B.H.M.
IV

H.M.
V

B.H.M.
V

Fig. 2. Bayesian network of the case study. The BN shows several nodes for each checkpoint shown in Figure
1. The abbreviation H.M. stands for Hazardous Material. The abbreviation B.H.M. stands for Burning Hazardous
Material. All nodes, besides node Smoke Alarm, are binary with states True and False. The node Smoke Alarm shows
three potential states, namely Single Alarm, Distributed Alarm and No Alarm. The highlighted nodes Fire in I-V and
Smoke in I-V can be observed by the robot.

Table 1. Additionally, a preference type is required

stating the criteria weights. Table 2 shows two

exemplary preference types that show different

criteria weights. For the first preference type, the

criterion of Safety is given the highest weight, for

the second preference type, the Distance criterion

is given the highest weight.

For both preference types, a MCDA is per-

formed each time the robot visits a new check-

point, and more than one checkpoint can be vis-

ited next. In order to enable a traceability of the

results, an exemplary evaluation table is shown

in Table 3. In this decision, the robot enters the

building and can move to either checkpoint I or

III. Thus, the set of alternatives is A = {I, III}.

For preference type I, the ranking of alternatives,

including the corresponding outranking flows, is:

φnet
Ω1

(I) = −0.124 and φnet
Ω1

(III) = 0.124. For

preference type III, ranking of the alternatives, in-

cluding the outranking flows, is: φnet
Ω2

(I) = 0.076

and φnet
Ω2

(III) = −0.076.

d

P (d)

p-valueq-value

1

Fig. 3. Preference function type V-shape with in-
difference criterion. The q-value is the threshold of
indifference, the p-value is the threshold of strict pref-
erence. In case of q = 0, the preference function is
equal to the third type called V-shape criterion. For
more information see Brans and Smet (2016).

4.1. Paths of Preference Types

Both complete paths, given the preference types

shown in Table 2, are shown in Figure 4 and 5.

Each figure shows the resulting path and high-

lights the decision between two to three check-

points. For preference type I (see Figure 4),

four decisions are made. Two decisions between
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Table 1. Values for preference function. The

values correspond to the description in Figure 3.

Criterion q-value p-value

Distance 0 16
Safety 0.05 0.4
Info. Exit 0 30
Info. Material 0.05 0.25

two checkpoints and two decisions between three

checkpoints. For preference type II (see Figure 5),

three decisions are made, all between two check-

points.

S III

I

I

V

IV

II

IV

V

V

IV

IV

Decision 1 Decision 2 Decision 3 Decision 4

Fig. 4. Path and decisions of preference type I (see
Table 2). Starting at S the chosen path based on the
MCDA is highlighted in orange.

S I

III

II

III

III IV

V

V

Decision 1 Decision 2 Decision 3

Fig. 5. Path and decisions of preference type II (see
Table 2). Starting at S the chosen path based on the
MCDA is highlighted in purple.

5. Discussion

The selected case study is highly simplified. Nev-

ertheless, this example already illustrates the com-

plexity of the resulting decision process as well

as the benefits of the presented approach. Given

only five checkpoints in the presented floorplan

(see Figure 1), a total of 20 differing routs are fea-

sible. The resulting BN (see Figure 2) is already

composed of 26 nodes. One major benefit of the

approach is the potential to build up the BN based

on rules that fill in the Conditional Probability

Tables. In this way, the number of checkpoints,

and thus the number of nodes considered in the

BN, can be easily expanded. Checkpoints can

individually be selected by emergency response

personnel at locations of high interest. In addition

to checkpoints, probability values indicating the

probability of existence of hazardous materials in

the area of the checkpoint are required as inputs.

Within the presented approach, only fire and

smoke can be detected. In a real-world use case,

more sensors could be added and the sensor in-

formation could be merged with the observations

of the emergency responders. Adding new sensor

types would require additional nodes in the BN.

Merging of observations by emergency respon-

ders could be achieved by manually inserting evi-

dence into the BN.

Whenever a decision is made as to which

checkpoint to move to next, another MCDA is

performed. The MCDA is based on the previously

defined criteria. The MCDA evaluation table is

updated when a checkpoint is reached and obser-

vations are made using the sensors. This is done

by inference in the BN, taking into account the

new observations as well as the new position of the

robot in the building. A limitation of the approach

is that in some cases only one step (in terms of

the transition to the next control point) is consid-

ered. For the criterion Gain of information about

the emergency exit more than one step ahead is

considered due the absolute distance to checkpoint

V. This limitation occurs, for example, when the

distance criterion is strongly preferred. Always

targeting the checkpoints with the smallest dis-

tance does not necessarily lead to the shortest total

distance of the overall path.

The results represented by the paths shown in

Figure 4 and 5 illustrate how strongly the resulting

path is depended on the criteria weights as well

as the setup of the floorplan of the building. The

resulting path of preference type I (see Figure 4)

shows four decisions with two to three alterna-
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Table 2. Criteria weights of two preference types. The criteria weights of one preference type sum up to one.

Both types show different criteria weights in order to illustrate the impact of these weights on the resulting route of

the robot.

Preference Type Criteria

Distance Safety Info. Gain Exit Availability Info. Gain Burning H. Material

ΩI 20% 35% 30% 15%

ΩII 35% 15% 20% 30%

Table 3. Exemplary evaluation table of the MCDA. The table shows the evaluation table of the MCDA

at checkpoint S. The alternatives are moving to checkpoint I or III as shown in Figure 1. The values of the

Safety-criterion correspond to the probability of a fire in the respective checkpoints. The values of the Info. Gain

Burning H. Material-criterion correspond to the probability of the respective node in the BN of the checkpoints. The

Distance is taken from Eq. (5). The value for the remaining criterion Info. Gain Exit Availability is taken from Eq.

(6).

Alternatives Criteria

Distance Safety Info. Gain Exit Availability Info. Gain Burning H. Material
[m] [%] [m] [%]

I 5 15 22 4
III 16 18 16 2

tives. Given the criteria weights of preference type

II, three decisions are made, each time between

only two alternative checkpoints.

Additionally, the results are shaped by the input

data used to set up the BN and to perform the

MCDA. The MCDA method used, PROMETHEE

II, shows a great benefit by using preference func-

tions that allow for the inclusion of thresholds

for indifference as well as for strict preference

(see q-value and p-value in Figure 3) between two

alternatives. In this way, the influence of a small

difference in one criterion can be limited and full

preference can be introduced. These thresholds

can be adjusted to the potential values obtained by

the BN and the floorplan.

6. Conclusion and Outlook

When searching for the optimal observation strat-

egy in emergency response by a robotic system,

multiple - often conflicting - criteria can be con-

sidered such as the safety of the robot itself or the

expected information gain at different areas of the

building. This paper presents a first approach to

consider different criteria in optimizing observa-

tion strategy. The approach combines a Bayesian

network to estimate the states of key aspects of the

emergency scenario and a Multi-Criteria Decision

Analysis to formalize the decision process. To

perform the MCDA, PROMETHEE II is applied.

First, areas of interest, i.e., checkpoints, are

identified on a floorplan of the building at risk.

Starting at the entrance, a decision is made on

which checkpoint to visit first. The number of

alternative checkpoints to visit next depends on

the location of the robot as well as the floorplan.

Each time a checkpoint is visited, observations

by the sensors based on the robot are made and

considered in the BN to perform belief update on

the variables in the network. Based on the new

location of the robot and the updated beliefs in

the BN, the next MCDA is performed to select the

next checkpoint. This process is performed until
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each checkpoint is observed.

The case study presented in this paper is sim-

plified, but illustrates the main principles of the

approach and illustrates the complexity of the de-

cision process. The results show that changes in

the weighting of the criteria have a large impact on

the resulting path. The approach can be adopted

to allow consideration of more checkpoints in

different floorplan layouts as well as consideration

of more criteria in the MCDA.

In future work, the approach should be ex-

tended so that more than one step ahead is

planned. In addition, the approach should be eval-

uated with domain experts based on a real-life use

case considering more criteria as well as check-

points.
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