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Safety is critical for many industries where a failure may impact the environment and human lives, such as in the
oil and gas sector. Risk-based inspection has been used for years to identify risk levels in operations and to design
inspection and maintenance programs to evaluate the most critical failure modes of the equipment. These programs
usually are designed considering two main and clearly conflicting objectives, which are to maintain operations at
acceptable risk levels while struggling to keep the costs associated with inspections manageable. Therefore, studies
have handled this issue as a multiobjective problem and used heuristics to optimize equipment inspection programs
in terms of risk and cost. However, in real-world applications, material and human resources restrictions proved
to be crucial factors when creating inspection plans for a set of equipment. This paper presents an early stage
methodology for optimizing inspection plans for multiple equipment in light of resources availability over time. The
proposed methodology considers the appropriateness of inspection methods for this industry and their frequency of
use to achieve acceptable risk levels while optimizing resources, reducing costs. The methodology is evaluated using
a set of ten Christmas Trees subject to a limited number of offshore support rigs for inspections. The Pareto fronts
for different constraint values showed a patent risk and cost improvement compared to a standard inspection plan
using fewer rigs.

Keywords: RBI, optimization, offshore, inspections, multi-equipment, multiobjective, NSGA-II.

1. Introduction

While petroleum products have been increasingly

consumed worldwide, the production growth has

only been possible due to the innovative nature of

this sector. This includes the extraction of a sig-

nificant amount of oil and gas on offshore instal-

lations, despite the enormous challenges involved

in this operation. Amongst them is the reliability

of the whole system, maintaining safety and reg-

ulatory compliance. Despite significant progress,

competitiveness has continuously pushed this in-

dustry towards more efficient operations.

A failure on offshore installations can lead

to natural disasters and endanger human lives.

Therefore, inspections and maintenance programs

are crucial. Risk-based inspection (RBI) method-

ology can be used as a basis for creating equip-

ment inspection plans by combining both the like-

lihood and the consequence of a failure. As more

inspections are performed, more information re-

garding the equipment state is known, contribut-

ing to reduce system failures and consequently

maximize asset availability. Therefore, a well-

conceived inspection plan can be useful for mini-

mizing the risks involved in oil and gas platforms

and allows preventive maintenance actions to be

taken. On the other hand, the greater the number

of inspections, the greater the cost of the opera-

tion.
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The problem of planning inspections is com-

monly modeled in the literature as a multiob-

jective optimization problem most considering

both risk and cost as objectives. Although it has

been extensively studied, there is a clear need

for additional research that incorporate constraints

when allocating inspection resources. Ideally, this

would allow individual adjustment of resource

allocation to improve overall efficiency (George

et al., 2022). This gap in the literature is mainly

due to the fact that previous work handled the

problem of optimizing inspection plans consid-

ering only one equipment. Therefore, all inspec-

tion resources would be available for utilization.

However, in real-world scenarios, multiple equip-

ment installations compete for limited resources,

making optimal resource allocation a challenging

problem.

In this paper we present the early stages of a

methodology for designing inspection plans for

multiple petroleum equipment installations aim-

ing to minimize the risk of failures and the cost

of inspections while taking into account the avail-

ability of resources over time. To assess the risk of

failure for each equipment over time, the method-

ology proposed by Maturana et al. (2022) was

used. In addition, the total cost of an inspection

plan is estimated by considering the cost of each

inspection method as well as the cost of mo-

bilizing a support rig. Here, this multiobjective

optimization problem (MOP) is handled by using

the Non-dominated Sorting Genetic Algorithm II

(NSGA-II) (Deb et al., 2002) subjected to the

availability of offshore support rigs.

2. Literature review

This section focuses on two main topics for the lit-

erature review: algorithms for solving multiobjec-

tive optimization problems (MOP), and resource

allocation.

2.1. Multiobjective optimization
algorithms

Solving MOP is generally a more complex task

than solving single optimization problems (SOP).

In order to avoid some intrinsic difficulties, some

authors adopt a strategy of transforming a MOP

into a SOP, as performed by Martorell et al. (2009)

and Su and Liu (2020). This simplification allows

the use of algorithms developed to solve SOP.

In this strategy, all objectives are combined into

a single meticulously constrained function. Com-

mon methods of adaptation are the use weighting

objectives method and the global criterion method

(Miettinen, 1998; Oliveira, 2005).

However, as these simplifications are user-

dependent, they can introduce uncertainties if the

parameters are not properly selected, such as the

assignment of weights. On the other hand, adapted

MOP algorithm solvers based in methods such

as Genetic Algorithms (GA) and Particle Swarm

Optimization (PSO) are found in the literature.

One of the most used variants of GA is the NSGA-

II (Su and Liu, 2020; Zhang and Yang, 2021;

Gong and Zhou, 2018; Dabagh et al., 2022).

According to Zhou et al. (2011), the major-

ity of Multiobjective Evolutionary Algorithms

(MOEAs) such as the NSGA, share a similar

structure: a selection operator based on the Pareto

dominance and the reproduction and mutation

operators, applied iteratively. The main idea of

NSGA is the selection process, used to sort the

dominated and non-dominated solutions, and a

method to create clusters, called crowding dis-

tance, with the objective of maintaining the di-

versity of the population (Castro, 2001). As men-

tioned by Meng et al. (2023), the NSGA-III is

suitable for most MOP problems and, especially

for solving complex and nonlinear issues with

three or more objectives.

Like MOEAs, the Multiobjective Particle

Swarm Optimization (MOPSO) algorithm, intro-

duced by Coello Coello and Lechuga (2002), re-

lies on a population, or in this case a swarm.

The particles benefit from their previous expe-

riences and experiences from the other particles

of the swarm. In MOPSO, it is proposed the

use of an external archive to save the history of

non-dominated solutions, a mutation operator, and

a restriction mechanism. As a result, a Pareto

Front can be formed (Coello Coello and Lechuga,

2002). An improved MOPSO algorithm is pro-

posed by Kong et al. (2021) mainly to reduce

the disadvantage of the premature convergence
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of this algorithm due to its ease of falling into

local optimum. Three modifications are carried

out: new learning strategies, a search strategy

based on simulated binary crossover (SBX) and

polynomial mutation (PM), and a dynamic archive

maintenance strategy. MOPSO is also used for

risk-based inspection planning in Petrochemical

industry (Dabagh et al., 2022) and preventive

maintenance of offshore safety critical equipment

considering risk and maintenance cost (Han et al.,

2022).

2.2. Resource constraints

While single equipment MOP is satisfactory in

some applications, it may be inadequate in a more

realistic multiple equipment scenario. To solve

this problem, Oyarbide-Zubillaga et al. (2008)

conceived a preventive maintenance optimization

model using Discrete Event Simulation (DES).

Within this method, the behavior of the equipment

is described by an analytical model, which also

includes the deterioration and failure processes

independently, while the stochastic nature of real

models is preserved. Goti et al. (2019) extended

this model by considering the condition-based

maintenance of equipment. Both models were ap-

plied to a hubcap production system, but the study

did not take into consideration the constraints on

resources that are often present in larger installa-

tions.

Resource management can be modeled in dif-

ferent ways in multiobjective optimization prob-

lems. Mostly, the main resource constraint is the

available budget, but many studies have included

human or material resource limitation in the ob-

jective formulation. In Martorell et al. (2009),

maintainability is a function of the personnel and

material availability, where different solutions can

be obtained using different resource parameters.

Some works handle resource limitations in a post-

processing routine, as in Su and Liu (2020). Oth-

ers use a penalty on the individuals of the evo-

lutionary algorithm which exceeds a threshold to

induce feasibility (Gong and Zhou, 2018).

However, the most common strategy is to model

resource availability as constraints, which is a fun-

damental concept in the optimization formulation,

and their implementation varies according to the

problem. For the maintenance planning of adja-

cent wind farms, Zhang and Yang (2021) proposed

a model to minimize costs and resources, subject

to resource availability constraints, among oth-

ers. The model uses an incidence matrix between

maintenance tasks and maintenance resources,

each of them requiring specific maintenance re-

sources. In the pavement maintenance and reha-

bilitation (MR) problem, the segment grouping

is a common practice employed to reduce costs.

However, aiming to avoid resource wastage and

the inefficiency found in this strategy, Meng et al.

(2023) considered the optimization problem sub-

ject to the constraints of annual budgets, individ-

ual and network pavement performance, and the

minimal and maximal length required for a MR

project. including a range of constraints into their

model. These included maximum battery capacity

and operational limits for generators, as well as

a time-varying resource, environment-dependent

renewable energy sources, such as solar and wind

power.

As shown in the review conducted by George

et al. (2022), there is potential for further research

concerning the resource allocation on the offshore

environment, where specific limitations are found,

such as the accommodation space and the tight

schedule for accomplishing the tasks. In addition,

a dynamic resource allocation that allows each

maintenance item to independently adjust its re-

source allocation based on the time required to

complete the activity would help to improve re-

source utilization.

3. Methodology

The methodology proposed in this article aim-

ing to design inspection plans of multiple off-

shore equipment by optimizing the risk of failures

and the operational cost constrained by resources

availability is presented in this section. As a case

study, a set of ten Wet Christmas Trees of 600

meters depth (XT-600m) is considered.

Here, an inspection plan is conceived as a se-

quence of windows of opportunity (a unit of time)

for performing equipment inspections. For each

window there are two possibilities: i) perform an
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inspection using one or a combination of methods;

ii) perform no inspection.

In the case study, a window of opportunity x

represents one month and the inspection plans are

designed for five years. Although it is a short

time horizon considering equipment lifespan, this

is only a preliminary experiment to evaluate the

proposed methodology.

Let xi be the i-th inspection window of oppor-

tunity (time unit), with i ∈ {1, ..,K}, and j be an

inspection method, with j ∈ {0, . . . ,M}, where

M is the number of inspection methods and their

combination and j = 0 represents no inspection.

Thus, x12 = 7 represents that the 7-th method (or

combination) will be used in the 12-th month to

inspect one equipment. In the case study, K = 60

(five years) and a method (or combination) can be

chosen from M = 29 available for each opportu-

nity.

To establish a baseline for comparison with

the optimized solutions, a standard optimization

designed by operator experts is employed here,

which performs a visual inspection at the 36th

month and functional tests every six months. This

baseline inspection plan was designed considering

guidelines from regulatory bodies, such as the

Brazilian National Agency for Petroleum, Natural

Gas and Biofuels (ANP), and international guide-

lines such as the American Petroleum Institute

(API) and NORSOK.

3.1. Risk and Cost Evaluation

Although information regarding failure modes has

been obtained from the equipment by the Failure

Mode Effects and Criticality Analysis (FMECA),

the risk indices in the present paper were calcu-

lated using the methodology proposed by Matu-

rana et al. (2022), which is better suited for the

purpose of this study as it incorporate the impact

of inspections. This methodology is based on the

different states (fault, degraded and operational)

of an equipment, and assumes that any failure or

degradation identified during inspections triggers

repair actions that restore the equipment to the

operational state.

When a multi-equipment scenario is consid-

ered, the risk is determined as the highest one

among them over time. This is the adopted to

maintain the integrity of all equipment at a maxi-

mum acceptable risk. Therefore, let ri be the risk

index of an equipment e at time i, the maximum

risk of this equipment is given by maxe(ri) for

i ∈ {1, ...,K} and e ∈ {1, ...E}, where E is the

number of equipment. Considering a set of equip-

ment the risk is given by φ = max(maxe(ri)).

In a complementary way, the work developed

by Cuba et al. (2022) defines the failure detection

probabilities once each inspection method is used

and, therefore, the assessment of its quantitative

impact on the risk. These probabilities are em-

ployed in the model to evaluate the risk indexes

according to the inspection method adopted and

the moment of its application. Many inspection

methods investigated there and their probabilities

of detecting a failure are used here.

Regarding the cost of the inspection process,

it is defined in terms of the estimated average

daily use of rigs required to employ an inspection

method and the costs of their navigation time. The

total cost calculated for each inspection plan is the

sum of these individual costs.

3.2. Constraints

One of the main objective of the present paper is to

introduce constraints in the optimization problem

to address the multi-equipment approach. There-

fore, the availability of rigs is considered here. It is

adopted that for each inspection method employed

in a unit of time, a rig will be allocated full-time

to it. Thus, this dynamic gives rise to a resource

constraint approach that must be imposed on the

generated inspection plans. Here, the availability

of rigs is adopted as a case study because it was

indicated as the most important resource by ex-

perts, as well as through analysis of maintenance,

incidents and accidents reports. However, many

other constraints are valuable for the inspections

of oil and gas equipment. For instance, the cost of

navigating the ROVs between different wells for

electrochemical potential measurement may be a

constraint, even when these ROVs are available.

Another example are the human resources avail-

able.
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3.3. NSGA-II

In this work, the NSGA-II is used to address the

MOP of designing inspection plans and its Python

library pymoo is employed for the experiments

(Blank and Deb, 2020). Other multiobjective op-

timization algorithms could be employed, but the

NSGA-II was chosen due to its success in similar

problems (see Sec. 2.1).

An individual of NSGA-II represents a multi-

equipment inspection plan. For this reason, each

individual’s gene represents a window of oppor-

tunity to inspect an equipment. Table 1 shows an

example of the representation of part of a single

individual for six months, where the internal in-

teger values reference its inspection method. In

this excerpt, the inspection methods are coded as

follows: 0 - no-inspection, 1 - visual inspection,

2 - electrochemical potential measurement, 3 -

ultrasonics.

Table 1. Example of an inspection method plan for

one equipment.

Month: 1 2 3 4 5 6

Inspection Method: 0 0 1 0 3 2

Knowing this structure and aiming to simplify

computational processing, as well as satisfy the

algorithm’s inputs within the software, the indi-

vidual takes the form of a one-dimensional array

of size K ·E. Thus, it is possible to handle risk and

cost calculations for each equipment (and conse-

quently for the set) considering that the sequence

referring to the e-th equipment is the interval that

starts at position (e−1) ·K and ends at (eK−1).

This encoding strategy can be seen in Figure 1.

Fig. 1. One-dimensional representation of multi-
equipment.

Given the individual encoding, it is necessary to

define the genetic operators and other parameters

for the algorithm to be able to create, process and

classify individuals in new generations.

3.3.1. Genetic Operators

The crossover operator combines characteristics

from two parent individuals in order to generate a

fitter offspring individual. The mutation operator

is also crucial for genetic diversification within

a population. When combined, genetic operators

improve the algorithm’s search space, escaping

from a possible premature convergence to a local

optimum. As in Morais et al. (2022), the SBX

crossover operator is used here with crossover

probability of 0.9 and the polynomial mutation

operator with a probability of 0.02 (Deb and Ti-

wari, 2008).

3.3.2. Algorithm Constraints

Constraints can be handled using different strate-

gies. By default, in the Python library pymoo, mul-

tiobjective algorithms follow the feasibility-first

strategy, which ranks feasible solutions as supe-

rior to unfeasible ones throughout the generations,

regardless of the relative rank of their respective

objective functions (cost and risk evaluation).

The resource constraint was modeled consid-

ering that for each unit of time, the maximum

number of inspections can not exceed the number

of available rigs. This occurs because we con-

sidered that a rigs is always necessary to per-

form an inspection, independent of the method

employed. For this purpose, the algorithm checks

if a maximum of P rigs is used for each window of

opportunity i (month). Considering the number of

equipment installations E and available rigs P , a

solution (inspection plan) is feasible if the sum of

inspections performed at any window is less than

P . Thus, E − P equipment can not perform any

inspection for the same window (time) i for the

solution to be considered feasible.

Therefore, in the feasibility check, it is en-

forced that any solution that exceeds the max-

imum amount of rigs used becomes unfeasible.

This is done assigning a high value to its risk and

cost evaluations, exceeding the maximum limits.

It is noteworthy that in this implementation, the

algorithm ends up spending time processing costs
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and risks of solutions that are later evaluated as

unfeasible, but the modeling has proven effective

in identifying feasibility.

Furthermore, the feasibility-first approach of

NSGA-II acts in the individual selection process,

but does not exclude unfeasible solutions, only

deprioritizes them for reproduction of the next

generation. Thus, it is necessary to distinguish the

degree to which a solution violates constraints.

Thus, a factor b · C was added to the cost and

risk of these solutions, where b is the number

of opportunity windows that the evaluated solu-

tion breaks the resource constraint and C is a

constant. This allows the algorithm to also select

the best unfeasible solutions over the generations,

contributing to their convergence.

Since the GA is a stochastic method, ten repeti-

tions were performed for each rigs constraint. The

algorithm parameters are shown in Table 2:

Table 2. Parameter values used in the case study.

Parameter Value

Months (windows of opportunity) 60
Inspection methods (amount) 29
Population size 50
Individual size (Genes) 600
Number of NSGA-II iterations 250
Crossover Probability 0.9
Mutation Probability 0.02
Number of equipment 10
Rigs (maximum) - constraint {1,5,9}
Repetitions for each rigs constraint 10

4. Results and Discussion

The amount of unfeasible solutions for 1, 5 and 9

rigs is shown in Figure 2. It is possible to observe

a difference in the trend of the curves for each con-

straint value. In a more restrictive environment,

there is a downward trend at the beginning of the

generations followed by an increase in the number

of unfeasible solutions. This is indicative of the

difficulty found by the optimization in generating

feasible solutions in a very restrictive scenario.

On the other hand, with nine rigs, the number of

unfeasible solutions remains very close to zero.

Fig. 2. Number of unfeasible solutions per generation
for different constraint values (number of rigs).

The difficulty of generating feasible solutions

observed here corroborates the behavior observed

in Figure 3. The graphs show the evolution of

solutions over generations for a repetition of each

rigs constraint.

These graphs show that the GA explored a

broader search space when a larger number of

rigs are available. This was the expected behavior

since the algorithm has greater freedom to explore

this space. Additionally, it is possible to observe

the convergence of GA towards the Pareto front.

It is also evident the convergence to feasible solu-

tions over the generations using the feasible-first

strategy to rank the best solutions by NSGA-II.

One-rigs constrained optimization has difficulty

generating better feasible solutions over genera-

tions, thus, the points in the one-rigs constrained

graph are concentrated in low-cost regions, where

there is lower resource utilization but higher risk

involved.

To analyze how the non-dominated solutions

for {1,5,9} rigs cover the search space, Figure 4

shows the Pareto fronts. In this figure, only the

feasible solutions were considered, where each

solution represents an inspection plan constrained

to the number of rigs available for each unit of

time. This graph shows the difficult of the opti-

mization algorithm to generate feasible solutions

in more constrained environments. Although the

experiment using only one rigs faced difficulty in

exploring some regions, it managed to generate

solutions as good as the cases less constrained

when the cost is less than 0.1× 107.
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Fig. 3. NSGA-II convergence for each constrained optimization.

Fig. 4. Pareto front for one, five and nine rigs.

Comparing the cost and the maximum risk of

the inspection plans found by the NSGA-II with

the standard plan, it is possible to note that the

algorithm achieved better results for five and nine

rigs (Figure 4). It is worth mentioning that the

standard plan is unconstrained, i.e., since inspec-

tion plans are designed for ten equipment, an

amount of ten rigs is considered. Thus, the algo-

rithm found better solutions for both objectives,

cost and risk, using fewer resources than the stan-

dard plan.

The experiments constrained to five and nine

rigs achieved better solutions compared to the

standard plan, both in terms of risk and cost. Table

3 shows the comparison between three inspection

plans with cost or risk similar to the standard plan.

These solutions are identified in Figure 4. For the

solution 1, the optimization with nine rigs has very

similar risk but a cost reduction of about 40%. In

terms of risk, the optimization process was able to

find two solutions with about 10% lower risk and

slightly lower cost.

Table 3. Comparison of optimized solutions with

similar risk or cost to the standard plan.

Solution Number Risk (Δ %) Cost (Δ %)
of rigs

1 9 0.03 -40.95
2 9 -9.42 -3.98
3 5 -10.23 -0.94

5. Conclusion

In this paper, an initial methodology is presented

to address the problem of optimizing inspection

plans for multiple oil and gas equipment while

taking into account resource availability. Aiming

to simultaneously minimize the risk of equipment

failure and inspection costs, the NSGA-II algo-

rithm was applied to solve this multiobjective op-

timization problem.

The experimental results showed that the algo-

rithm is capable of converging towards regions of

the search space that yield better solutions, that

is, inspection plans with lower risks and costs. In

addition, considering five or nine rigs, the NSGA-

II was able to achieve better solutions than a stan-

dard inspection plan for a set of ten Wet Christmas

Trees of 600 meters depth. This implied a risk

reduction of approximately 10% and 40% of cost

savings.

When the optimization was performed using



2030 Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

only one rigs, no solutions that surpassed the stan-

dard plan were obtained. In fact, the algorithm

was unable to explore regions of the search space

related to performing many inspections, that is,

regions that result in high costs.
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