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In wind turbines, the power-electronic converters used for connection to the power grid are among the most
frequently failing subsystems. For root-cause analysis and a subsequent development of effective countermeasures,
it is an important task to identify influences having a significant effect on the converter reliability. Based on data
from a large fleet of wind turbines spread across five continents, the failure behavior of power converters is modeled
by means of a nonhomogeneous Poisson process (NHPP) regression model in the present work. Besides constant
covariates characterizing design-related aspects, site-specific environmental and operating conditions of the wind
turbines are included in the analysis as time-dependent covariates. As suggested by seasonal and load-dependent
patterns observed in the failure behavior, the analysis results confirm that both humidity and the electrical load of
the turbines have a significant effect on the reliability of the converter core components and allow for a quantification
of these effects.
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1. Introduction

A considerable portion of the levelized cost of

wind energy is related to operation and mainte-

nance (O&M) of wind turbines (WTs). Herein,

a major part accounts for repairs and replace-

ments after failures. In addition, failures cause

turbine downtime and with that revenue losses.

Enhancing reliability is therefore key to achieve

further cost reductions. Understanding the failure

behavior and relevant factors driving failure is

essential to develop effective countermeasures and

establish cost effective O&M processes.

As different reliability surveys have shown, e.g.

Lin et al. (2016); System Performance, Availabil-

ity and Reliability Trend Analysis (2017); Dao

et al. (2019), power converters are among the

most frequently failing subsystems of wind tur-

bines. Despite considerable progress during the

past years, the knowledge about the mechanisms

and causes can still be improved. This publication

aims at extracting further insights from field relia-

bility data to support root-cause analysis.

WTs in the field are exposed to environmen-

tal and operating conditions differing between

regions and varying with seasons. Hence, relia-

bility models should include environmental and

operating conditions to account for different cli-

matic conditions and particularly for seasonality.

This paper presents results from reliability analy-

sis which directly incorporates both constant and

time-dependent covariates. The analysis is based

on an extensive field-data collection of more than

6,000 turbines worldwide.

The remainder of this paper is structured as

follows: Section 2 reviews previous work regard-

ing reliability modeling including constant and

time-dependent explanatory variables in the con-

text of wind energy. Section 3 describes the data

basis. Sections 4 and 5 introduce the mathematical

framework and its implementation. The results are

presented and discussed in Section 6. The paper

closes with conclusions in Section 7.

2. Reliability Modeling Including
Constant and Time-Dependent
Explanatory Variables

Field reliability data is not necessarily limited to

failure data. It may also contain (or be comple-

mented with) concomitant variables that can be

useful in gaining a better understanding of the

underlying failure causes. Regression-based reli-

ability models are capable of including a set of
549
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covariates to investigate the effect of these poten-

tial influencing variables. In the area of reliabil-

ity analysis for wind turbines, only few previous

field-data-based reliability studies have investi-

gated the impact of site conditions on the failure

behavior of wind turbine components by means of

regression models.

Slimacek and Lindqvist (2016) presented re-

sults from a Poisson regression model including,

among other covariates, a proxy variable cap-

turing the harshness of the environment. This

turbine-specific covariate indicated the number

of stops caused by external natural factors, but

did not include environmental covariates directly.

Ozturk et al. (2018) investigated the reliability

of wind turbines using survival analysis models

incorporating different operational, geographical

and environmental factors as covariates, e.g. cli-

matic regions, distance to coast or the mean an-

nual wind speed. The analysis was based on data

from 109 turbines in Germany operating for a

period of 19 years.

Climatic and wind conditions vary with time

and season. More advanced reliability models take

into account the variation of such environmental

quantities over time. A study by Jiang et al. (2016)

explored the effect of environmental conditions

based on monthly averaged covariates in a mul-

tiplicative model. The effects of temperature, hu-

midity, rainfall, and wind speed on reliability were

investigated at turbine-system level. However, the

size of the evaluated dataset covering 33 turbines

limits the conclusiveness of the obtained results.

Based on data of 383 wind turbines, Reder and

Melero (2018) proposed different reliability mod-

els incorporating monthly-averaged time series of

six on-site environmental variables taken from

nearby weather stations as well as operating data

from the Supervisory Control and Data Acquisi-

tion (SCADA) system. The models were applied

using failure data on turbine-system level as well

as on subsystem level (gearbox). The study was

intended to compare different regression model

approaches (including e.g. Poisson, negative bino-

mial and zero-inflated models) and to determine

the best combination of models and variable se-

lection.

Recent work by the authors, Pelka and Fischer

(2022); Fischer et al. (2023), has investigated the

effect of constant covariates such as design-related

variables, site-specific mean absolute humidity

and mean capacity factor on converter reliabil-

ity in wind turbines. In that analysis limited to

constant covariates, regional differences regarding

humidity level and load regimes have been cap-

tured and their effects on converter reliability have

been quantified. Other field-data analyses of the

authors, Fischer et al. (2018, 2019), have revealed

pronounced seasonal patterns in the failure behav-

ior of WT power converters. A correlation with the

seasonally varying ambient absolute humidity at

the WTs was visually observed but the effect was

not investigated by means of reliability models so

far. Achieving this step is the subject of the present

work.

3. Data Description

3.1. Field failure data

The comprehensive field failure data forming the

basis of the present work are summarized in Table

1. The data set covers converter-specific data of

6,121 wind turbines of different manufacturers.

Only turbines with a power converter are included

and their data are investigated. The operating sites

include onshore and offshore sites and are dis-

tributed over five continents, see Fig. 1. For details

on the turbines and their power converters as well

as on data processing, please refer to Pelka and

Fischer (2022).

Fig. 1. Locations of the wind farms included in the
analysis
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The present analysis focuses particularly on the

component category ’phase module’ comprising

the core components of the converter (power-

semiconductor modules, their driver units, DC-

link components) as this category was identified as

the main driver of downtime and repair cost within

the main converter system in previous analyses

(Fischer et al. (2019)). Only failures of the ’phase

module’ category are considered in the following.

As a previous study by the authors, Fischer et al.

(2021), has revealed different seasonal failure pat-

terns for air-cooled and liquid-cooled converters,

models including time-dependent environmental

covariates should distinguish between the con-

verter cooling system. The set of turbines evalu-

ated in the following contains only liquid-cooled

converters.

Table 1. Converter-specific failure data set and char-

acteristics of wind turbines under consideration

Number of turbines 6,121 WTs
covered by the analysis

Total number of evaluated 15,490 years
WT operating years

Year of WT commissioning 2000–2020

Converter-specific failure 2006–2020
data from years

Rated power of WTs 850–6150 kW

3.2. Supplementary environmental data

For every wind farm location, time series de-

scribing the site-specific environmental conditions

have been extracted from the publicly available

ERA5 reanalysis data set provided by the Eu-

ropean Centre for Medium-Range Weather Fore-

casts (ECMWF (2022)). The ERA5 data set cov-

ers a large number of atmospheric and oceano-

graphic variables at an hourly resolution and with

an approx. 30 km × 30 km grid spacing with

global coverage.

The variables of the ERA5 reanalysis data set

used in this study are the temperature, dew-point

temperature and the wind speed, the latter adjusted

to the average hub heights of the investigated tur-

bine types. Based on temperature and dew-point

temperature, the absolute humidity is calculated.

In a study based on comprehensive climatic field-

measurement data and ERA5 reanalysis data by

Fischer et al. (2021), ERA5 has proven to be a

suitable and valuable source for site-specific WT-

ambient climatic time series. For use as covariates,

time series corresponding to the data-collection

period of the individual turbines have been ex-

tracted.

It is important to note that for an analysis of cli-

matic effects on converter reliability, the climatic

conditions inside the power-converter cabinet are

relevant, not those in the ambient air of the WT.

However, we can make use of the fact that the

absolute humidity inside the converter cabinet of

WTs typically follows the ambient absolute hu-

midity very closely and with only a short time

delay (<1h), as shown in Fischer et al. (2021) and

Fischer and Göhler (2022). We may therefore use

the absolute-humidity time series from the ERA5

data set as a good approximation of the cabinet-

internal humidity condition.

3.3. Power time series estimation

Due to wind speed variation, the turbines in the

field are exposed to very diverse operating condi-

tions. To be able to characterize and include the

site-specific load regime of all WTs in spite of the

fact that SCADA operating histories are available

only for some of the turbines, we approximate

the potential power output fed to the grid: The

turbine-specific power curve provided by the man-

ufacturers (see Fig. 2 for an example) gives the

ideal output power of a turbine at a specific wind

speed. Based on the power curve and ERA5 wind-

speed time series, which are adjusted to hub height

using the power law (with different exponents for

onshore and offshore sites), power output time

series for every investigated turbine are calculated.

An example of a wind-speed time series and the

resulting WT active-power time series is presented

in Fig. 3. As power curves are only available at 1

m/s or 0.5 m/s resolution, linear interpolation is

used, which provides sufficient accuracy for our
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case. Moreover, for wind-speed values below cut-

in wind speed (typically between 3 and 5 m/s) and

wind-speed values above cut-off wind speed, the

power is set to zero (cf. Fig. 2). Each turbine’s

power time series generated in this way is normal-

ized with its rated power.
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Fig. 2. Example power curve of a wind turbine
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Fig. 3. Illustration of power time series estimation
from hub-height wind speed

To validate the methodology and quantify the

estimation error, more than 700 turbines have been

used for which SCADA operating data and thus

measured active power time series are available.

These include turbines of a variety of different

types and locations. An evaluation of the devia-

tions and root mean squared errors between the

SCADA operating data and the estimated power

time series has shown that the proxy time se-

ries adequately represent the dynamic site- and

turbine-specific load conditions: Comparing the

daily mean values of measured and estimated

power time series, the deviation remains below

10% in 84% of all days. Only 4% of the daily

mean values show a deviation of 20% or more.

Note that within the proxy time series character-

izing the operating condition, effects of down-

time, curtailment and site-related performance

losses (wake effects) are neglected and the max-

imum possible yield is considered. This leads

inevitably to some deviation between measured

and estimated values. In view of the results of

the above described validation procedure, the esti-

mated power time series are nevertheless consid-

ered a suitable measure for characterizing the WT-

individual time-variant operating conditions in the

present study.

4. Mathematical Framework

Reliability theory categorizes systems into non-

repairable and repairable systems. In this work,

the power converter is considered to be a re-

pairable system, which consists of a large number

of components including at least one phase mod-

ule.

After a phase-module failure, this phase module

is repaired or replaced and the power converter is

restored to satisfactory performance. Hence, fail-

ures are observable recurrent events in time and

we model these with Poisson processes (Ascher

and Feingold (1984)).

Let N(t) be the number of events occurring in

the time interval [0, t] and let N(a, b] denote the

number of events occurring in (a, b]. A counting

process {N(t), t ≥ 0} is called Poisson process if

it satisfies (Ascher and Feingold (1984)):

(1) N(0) = 0

(2) For any a < b ≤ c < d, the random variables

N(a, b] and N(c, d] are independent.

(3) There exists a function such that

λ(t) = lim
Δt→0

P (N(t, t+Δt] = 1)

Δt
.

The function is called the intensity function of

the Poisson process.
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(4) For each t > 0 holds

lim
Δt→0

P (N(t, t+Δt]) ≥ 2)

Δt
= 0.

Poisson processes can be fully characterized by

their intensity function λ(t), which is at time t a

measure of the unconditional probability that the

repairable system will fail in a small time interval

(t, t + Δt]. A frequently used parametric form of

the intensity function in applications to repairable

systems is the power-law intensity (Ascher and

Feingold (1984))

λ(t) =
( δ

ν

)( t

ν

)δ-1

, (1)

where ν > 0 is the scale parameter and δ > 0 is

the shape parameter.

The power-law intensity corresponds to the

minimal repair assumption: The system is repaired

to the state it had immediately before the failure.

In practice, the concept of minimal repair corre-

sponds to the repair or replacement of only a small

part of the system. This is a reasonable assumption

also for the modeling of power converter systems.

The power converters are considered to be m

similar independent repairable systems that differ

in design and site-specific conditions. This ob-

servable heterogeneity is incorporated by covari-

ates, which can be constant or time-dependent.

Adapting the model of Cook and Lawless (2007),

the intensity function is adjusted to account for

observed heterogeneity through a multiplicative

model

λ(t) = λ0(t) exp(β1x1(t) + · · ·+ βpxp(t)) (2)

where λ0(t) = ( δν )(
t
ν )

δ-1 is the baseline inten-

sity function. xi(t) represents a vector of time-

dependent covariates at time t. Constant covari-

ates, namely xi(t) = xi for all times t, are a

special case of this general form. β = (β1, ..., βp)

is a vector of unknown coefficients corresponding

to the covariates.

Apart from heterogeneity explained by the co-

variates, there may be other factors which affect

the failure behavior but have not been measured

and are not available otherwise. To account for

such unobserved heterogeneity, a multiplicative

frailty model is used. In this model, variation is

modeled by the term z assuming that each system

has its individual frailty and can be viewed as

being the effect of an unobserved covariate. The

unobserved frailties z are assumed to be indepen-

dent and identically distributed. The most com-

mon choice of frailty distribution is the gamma

distribution, which is scaled to mean 1 and vari-

ance θ for the sake of computational simplicity

(see e.g., Cook and Lawless (2007)).

The model described by Eq. (2) becomes

λ(t) = zλ0(t) exp(β1x1(t)+· · ·+βpxp(t)), (3)

with z being the individual frailty term of each

system. Note that within this multiplicative model,

the effect of one covariate can only be investigated

when simultaneously keeping the other covariates

unchanged. The coefficients are to be interpreted

with a relative effect on the baseline covariate. A

negative coefficient β < 0 results in exp(β) < 1

and therefore the baseline intensity is reduced by

the effect of exp(β). Vice versa a positive co-

efficient β > 0 has an increasing effect on the

baseline intensity.

The model (3) is fitted by constructing the like-

lihood function L for the observed failure data of

the m systems and maximizing logL with respect

to the unknown parameters β1, ..., βp, δ, ν and θ.

The likelihood function L derived for Eq. 3 can be

found in Chapter 2 of Rondeau et al. (2012) as Eq.

(2), where the baseline intensity function has to be

adjusted to the power-law intensity used here.

Inference on the covariates is based on

likelihood-ratio statistics, see (Meeker and Esco-

bar (1998)). Additionally, the standard errors are

computed and the confidence intervals are con-

structed using the Hessian of the log-likelihood

function as described in Cook and Lawless (2007).

We use the operating age of the turbine as

the time scale and only one type of event

(phase-module failures) is of interest. The time-

dependent covariates are incorporated with a tem-

poral resolution of two days (i.e. with two-day

average values).

5. Implementation

The results have been obtained using R Statistical

Software version 4.2.2 (R Core Team (2022)).



554 Proceedings of the 33rd European Safety and Reliability Conference (ESREL 2023)

The frailty regression models were fitted using

the package frailtypack (Rondeau et al. (2012)).

In comparison with the analysis with constant co-

variates presented in Pelka and Fischer (2022), the

inclusion of time-dependent covariates increases

the dataset underlying the regression by a factor of

approx. 500. Data preprocessing and visualization

were performed in MATLAB version R2022a.

6. Results and Interpretation

To assess the validity of assuming a power-law

process as a baseline intensity for the Poisson pro-

cess, the non-parametric cumulative failure inten-

sities are plotted vs. the failure times in a double-

logarithmic representation, see Fig. 4. The non-

parametric cumulative intensity is estimated by

means of the Nelson Aalen estimator (Ascher and

Feingold (1984)). The roughly straight shape of

the graph confirms that the power-law process is a

suitable choice for the baseline intensity. Failures

observed during the day of WT commissioning

(zero-time failures, colored light grey in Fig. 4)

are excluded form the analysis as they are likely

to be governed by different mechanisms than the

other failure events. The data set covers failures

up to an WT operating age of 16 years.

Fig. 4. Plot of natural logarithm of non-parametric
cumulative failure intensities vs. logarithm of failure
times for the evaluated data set (excluding zero-time
failures in grey)

The model described by Eq. 3 with constant

covariates and different combinations of time-

dependent covariates is numerically fitted by

means of the maximum likelihood method. The

model quality resulting from different combina-

tions of covariates is presented in Table 2. The

included constant design-related covariates, which

have been identified by means of the variable

selection procedure described in Pelka and Fis-

cher (2022), are ’turbine commissioning year’ and

’converter rated power’ as numerical covariates

and ’IGBT-module manufacturer’ as a categorical

covariate. We refer to them with the abbreviation

CC (constant covariates) in the following.

Table 2. Comparison of model quality for models with

different sets of covariates

Covariates included in the model -2 log(L)

CC (constant covariates) 24,380
CC, Estimated power 24,359
CC, Absolute humidity 24,256
CC, Estimated power, Absolute humidity 24,226

To determine the significance of the effect of the

covariates, likelihood ratio tests are performed.

The results show that incorporating site-specific

absolute humidity improves the model signifi-

cantly, indicating that this time-dependent covari-

ate has a significant effect on the failure behavior

of the investigated power converters. The same ap-

plies for the site-specific estimated power: While

it benefits the model quality less than the absolute

humidity, also this second time-dependent covari-

ate is found to improve the model significantly.

For the determined set of covariates having a

significant effect on converter (or more specifi-

cally: phase module) reliability, Table 3 summa-

rizes the estimated coefficients βi together with

their 95% confidence intervals. These coefficients

provide additional information on whether the

corresponding covariate has a positive or a nega-

tive effect on reliability and how strong this effect

is. Note, however, that the values of these coeffi-

cients may not be directly compared among each

other as they refer to the individual scale of each

covariate.

A higher rated power of the converter is found

to have a negative effect on reliability, which is

physically plausible. The negative sign of the β
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Table 3. Results of parameter estimation

Covariate β exp(β) Confidence
(if applicable: factor level) interval

Converter rated power 0.63 1.89 [0.47,0.80]
Commissioning year -0.19 0.82 [-0.21,-0.18]
Module manufacturer (B) -0.36 0.70 [-0.89,0.17]
Module manufacturer (C) 0.10 1.11 [-0.09,0.29]
Absolute humidity 0.07 1.08 [0.06, 0.09]
Estimated power 0.57 1.77 [0.36, 0.79]

coefficient corresponding to the WT commission-

ing year indicates a higher phase-module relia-

bility for WTs commissioned in later years (i.e.

tending to contain more modern technology). Re-

garding the time-dependent covariates being of

particular interest in the present study, the β co-

efficients indicate that higher absolute humidity

negatively affects converter reliability: Per 1 g/m³

higher two-day averaged absolute humidity, the

failure intensity increases with a factor of 1.08.

Taking into account the considerable seasonal

variations in absolute humidity with differences

of e.g. more than 20 g/m³ between summer and

winter levels in India, this explains the excessively

increased failure intensities observed during the

summer months in that region, but also the less

extreme seasonal failure patterns in other regions

(cf. Fischer et al. (2018)). Likewise, a higher elec-

trical load has an increasing effect on the failure

intensity and therefore a negative effect on the

reliability: Per 25% higher electrical load of the

WT (e.g. operation at 75% instead of 50% of the

rated power), the intensity increases by a factor

of 1.15. While this factor does not exceed 1.77

(corresponding to operation at 100% vs. 0% of

the rated power), that of absolute humidity will

take on higher values for humidity differences of

8 g/m³ and above. In many regions of the world,

the failure behavior will therefore be influenced

more strongly by variations in the climatic condi-

tions than by variations of the electrical load.

7. Conclusions

A nonhomogeneous Poisson process (NHPP) re-

gression model has been utilized to quantify the

effect of environmental and operating conditions

on the failure behavior of power converters in

wind turbines. To characterize observed hetero-

geneity between the converter systems, both con-

stant and time-dependent covariates have been in-

cluded. In addition, random effects accounting for

unobserved heterogeneity have been considered in

the model. The analysis has been performed using

a temporal resolution of two days.

The results show that both absolute humidity

and the electrical loading level have a signifi-

cant effect on the reliability of the converter core

components. The higher the humidity level or

the higher the electrical load, the higher is the

failure intensity. The results explain and confirm

the observations of seasonal patterns in the failure

behavior reported in Fischer et al. (2018, 2019).

In addition, the findings are in agreement with

the humidity- and load-dependencies encountered

during the investigation of environmental and load

conditions preceding failure events for certain

groups of turbines documented in the same arti-

cles. The analysis method described and applied

in the present work has made it possible to inves-

tigate these effects separately and quantify them.

While regression-based reliability models in-

tended for the identification of prevailing failure

causes and failure-promoting factors as in the

present case are best based on a diverse turbine

fleet distributed over different climate zones, po-

tential future models intended e.g. as input for

wind-farm specific maintenance modeling and op-

timization are best derived using data from the

WT types and region of interest.
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