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Railway overhead catenary (ROC) is a linear asset and spread over large area. Different regions of the linear asset 
are exposed to different climate conditions such as temperature, wind, and ice accretion and operating conditions. 
If these conditions disrupt the functionality, then it leads to failure resulting in line closure. Being ROC is a linear 
asset, condition monitoring (CM) is difficult due to large distances, climate conditions, costly due to requirement of 
special equipment at the location and effects the scheduled traffic by occupying the tracks. Hence, there is a need 
for technologies to monitor the condition of ROC through a cloud-based approach which has faster response time. 
Light Detection and Ranging (LiDAR) can be used for CM of ROC. It collects spatial data in the form of 3D point 
cloud in various domains such as construction, mining and railways. LiDAR devices will be mounted on 
locomotives on a regular traffic. The point cloud data is processed to extract the railway assets such as tracks, masts, 
catenary etc. and surrounding vegetation. Further, processing of point cloud data can be used to extract exact location 
and position of the assets. One of the failure modes for ROC, if the distance between the two wires is less than the 
specifications, then it leads to failure. This paper develops a cloud-based approach to measure the distance between 
specific wires, through processing of point cloud data. This approach forms the foundation for data augmentation 
and development of hybrid digital twins (DT) of railway overhead catenary. 
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1. Introduction 
Asset management of railway system is essential 
for robust, resilient, and reliable operations. 
Railway Overhead Catenary (ROC) powers the 
electric locomotives. Use of electric power is the 
main reason behind low greenhouse emission of 
railways among all the modes of transportation at 
0.4% (Statista 2021).  

In case of ROC, prominent failure mode 
is due to interaction of wires with high potential 
difference such as tension wire (ground potential) 
and reinforcement conductor (15KV). Such 
failures can result in delayed traffic, loss of 
property and reputation for the infrastructure 
owner and in extreme cases lead to accidents. 
Since, the power lines are linear assets, there are 
several challenges in inspection of such 

distributed assets. The existing condition 
monitoring methods usually carried by 
maintenance personnel through visual 
examination which are time consuming, 
expensive and introduce uncertainty due to 
human errors. In addition, it is dependent upon 
heavy equipment and presence of personnel on 
location which needs longer processing time. 
Additionally, such methods can also cause delay 
in the scheduled traffic since the equipment 
occupies the tracks. Hence, the existing condition 
monitoring methods are inefficient and 
ineffective. 2D imaging-based methods are 
unsuitable because of the loss of depth 
information which is critical for inter wire 
distance measurement. Other condition 
monitoring methods rely on using on-board 
sensors. Overall, these factors result in lowering 
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the frequency of inspections. Hence, it is 
necessary to utilise technologies that enable the 
faster response time (through cloud-based 
approaches). 

Light Detection and Ranging (LiDAR) 
can be one of the sensors to monitor ROC. It is a 
sensor which creates a 3D representation of the 
surroundings by scanning a LASER beam, the 
scanning is performed by two mirrors to provide 
horizontal and vertical scan. The resulting data is 
called point cloud and provides the positional 
coordinates and intensity value for each scanned 
point. The position value is generally represented 
as x, y, z components and may have latitude, 
longitude and altitude values derived from GPS. 
LiDAR device can have integrated camera which 
provides color information for each of the points. 

Since the LASER beam may penetrate 
through low density regions points collected near 
each other may have large depth variation. Due to 
these reasons, in the point cloud data the order of 
stored points does not indicate vicinity in real 
world unlike as in 2D images.   

In order to localize and translate the 
points when LiDAR is mounted on a moving 
train, Simultaneous Localization And Mapping 

(SLAM) algorithms are integrated within the 
device (Durrant-Whyte and Bailey 2006). This 
method allows efficiency in scanning for 
coverage of large areas.  
The point cloud data generated from LiDAR 
scanning is inherently discrete in nature. 
Algorithms designed for point cloud processing 
should mitigate the effects of varying resolution.  
For monitoring the position of catenary wires, the 
LiDAR is mounted in front of a train and resulting 
point cloud can be seen in Fig 1.  Researchers 
have developed algorithms to extract assets from 
power line point cloud by developing various 
methods such as shape based segmentation, 
altitude based segmentation, and feature based 
segmentation (McLaughlin 2006; Shen et al. 
2018; Kim and Sohn 2010). Similarly in case of 
ROC researchers have developed methods for 
extraction of various assets from the point cloud 
(Arastounia 2017). Chen et al have proposed two 
stage classification method based on semantic 
features extracted from point cloud (Chen et al. 
2021). Semantic features generated from 
Eigenvalues of point clouds is a suitable 
technique to bring structure and further classify 
the points (Chehata, Guo, and Mallet 2009). 
These semantic features generated from point 
cloud data can be used for classification through 
various machine learning algorithms (Weinmann 
et al. 2015). However, measurement of minimum 
distance between two hanging wires has not been 
addressed in literature. 

In addition, there is lack of automated 
approaches that will have significant benefits on 
CM and maintenance of linear assets. The 
purpose of this paper is to enhance the operational 
reliability of ROC. The objective of this paper is 
to develop a cloud-based approach for detecting a 
failure mode of minimum distance between 
tension wire and reinforcement wire. This can be 
expressed by converting point cloud wire data to 
mathematical form and extracting minimum inter-
wire distance to detect failure condition. For the 
implementation of cloud-based approach, it will 
be efficient to represent the ROC in a digitised 
format. Representation of ROC in mathematical 
form will allow automated analytics to extract the 
condition of this asset. Additionally, this 
automated process will enable for development of 
models which will become a part of ROC DT. 
This work is the extension of our research towards 

Figure 1. Railway overhead catenary point cloud 
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development of digital twins of ROC (Voorwald 
2022; Patwardhan 2022).  
2. Methodology and Results 
The end-to-end process flow of point cloud data 
can be described from data acquisition to its use 
for information representation or visualisation as 
shown in Fig 2. This process flow is being 
implemented in a developed cloud-based 
architecture (Patwardhan 2022). Pre-processing, 
processing, and post-processing stages are the 
focus of this paper. 
2.1. Point Cloud Pre-processing 
The pre-processing stage for point cloud data 
involves removing of points and regions which 
are not required for the failure mode of ROC such 
as noise points and the ground surface. Suspended 
dust particles and fog results in noise in the point 
cloud. When the LiDAR is mounted on the 
locomotive two meters from the ground, more 
than 60% of the scan data is generated from the 
ground surface and is discarded at this stage. 
However, the level of ground plane is retained 
since the height of the contact wire from the 
ground level is a known as a standard value see 
Fig 3 (a). Decimation of point cloud is also 
performed to reduce the number of points to 

 

Figure 3. Extraction of individual wires 

 

Figure 2. Point cloud acquisition to 
visualisation 
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reducing the computation time of point cloud 
processing. 
2.2. Point Cloud Processing 
This stage focuses of extraction of individual 
wires from the point cloud data. This is performed 
in various sub-stages such as cropping, clustering, 
and segmentation. Point cloud processing stages 
can be seen in Fig 2. Fig 3 (a) shows the point 
cloud without the ground plane but the catenary 
with the mast, portals, wires and surrounding 
vegetation is visible. Fig 3 (b) shows the result of 
DBSCAN clustering all the smaller clusters are 
removed to remove the vegetation from the point 
cloud. Vertical masts are detected and discarded 
while retaining their position in global 
coordinates (SWEREF 99) see Fig 3 (c). Points 
between the masts nearly perpendicular to the 
wire direction represent the portals, these points 
are extracted and discarded see Fig 3 (d).  Finally, 
clustering is performed to extract individual wires 
see Fig 3 (e). 

Since the focus is on detection of 
distance between the tension wire and 
reinforcement conductor, only specific regions 
where the tension wire is detected are retained. 
The tension wire is detected with the property that 
it is not parallel to the rest of the catenary wires. 
The reinforcement conductor is extracted through 
their relative position with respect to mast. Thus, 
individual wires are extracted as set of points. 
2.3. Post-processing 
The post processing stage focuses on extraction of 
information from the segmented point cloud data.   

In mathematical terms catenary is 
defined as the shape formed by a weighted rope 
hung between two points. All wires except 
contact wire in ROC are freely hanging wires 
between two end points on the masts. Hence, they 
follow the catenary curve equation. The catenary 
equation in 2D space is as shown in Eq. (1), where 
a is the ratio of tension on the wire to its weight 
per unit length (Chatterjee and Nita 2010). 

 
The tension wire and reinforcement conductor are 
fitted to equations numerically as shown in Fig 4. 
The extracted curve information is stored in a 
database with the following data values per curve 
a) date of scan b) two mast position c) curve 
parameters d) rotation and translation matrix and 
e) wire category. This step is critical since it 
transforms the wire information from discrete 
points to continuous mathematical form, hence, 
mitigating the limitations of discrete point cloud 
data.  These stored variables allow reanimation of 
the catenary curves over a period of time. Since 
the data is stored in a database, any future 
information extraction requirements can be 
accomplished through targeted queries. 

The minimum permissible distance 
between the tension wire and the reinforcement 
conductor is about 20 cm. A failure is considered 
when these two wires are closer to each other than 
the permissible value. Hence an approach to 
measure the minimum distance between the two 
wires is required. Since, the wire information is 
stored in continuous mathematical form, 
mathematical analysis can be applied to the 
generated wire equations. 

 

 

 
 

 
 
 Where  and   are the equations 
generated for the two wires, T and R respectively 
are the translation and rotation operations 
performed based on the stored parameters for 
each wire. The distance between the curves is 
represented by  and its graphical 
representation can be seen in Fig 5 as a set of 
convex curves. The minimum distance  is 
extracted as the minimum value of , Fig 5 
shows a graphical representation of  and the 
lowest point of intersection of the set of curves 
formed in represents . 

The final result  provides the 
coordinates on the curves and which allows 

Figure 4. Point cloud to curve 
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distance measurement at the closest point of the 
two curves representing the wires. Computed 
minimum distance is represented by line of red 
colour in Fig 6.  
 
3. Analysis and Discussion 
The presented approach can extract the minimum 
distance between the two wires represented as 
catenary curves in 3D space. However, one 
condition, not encountered in the current dataset 
is possibility of vanishing gradient in the 
generated distance function. This condition may 
occur if the two wires are at a constant shortest 
distance over some distance. 
 Implementation of point cloud data 
processing pipeline will automate the inspection 
process hence reducing the time and cost 
requirements as well as reducing the dependency 
on specialized equipment and presence of 
personnel on site. It will be a highly beneficial 
approach towards CM for linear assets. 

As discussed in the paper representation 
of extracted information as numerical values 
(mast positions) and mathematical equations 
(catenary wires), and stored in a database allows 
to a) store the digitalized catenary in significantly 
less space b) supports better condition monitoring 
c) perform computation d) perform comparison 
over a period of time e) perform data 
augmentation f) generate visualization for virtual 
reality environments g) provide on ground asset 
information through augmented reality devices 
and, h) supports development of simulation 
models useful for developing digital twins. 

  
4. Conclusion 
This article presents continuation of our previous 
work towards development of digital twins of 
ROC by using point cloud data.  
 In this paper, we have presented a 
method to extract ROC wires and inter-wire 
distance from point cloud data and represented it 
mathematically. This mathematical 
representation enables for the detection of 
possible failure mode. This conversion also 
reduces the amount of information required to 
digitize ROC information. This approach can be 
extended to various other linear or non-linear 
assets for improved CM and asset management. 

The resulting data driven model of ROC 
representing wires in mathematical form will be 
used for data augmentation and become a part of 
a ROC DT. The envisioned DT will be used for 
predictive maintenance based on climate 
conditions. 
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Figure 5. Curves representing the distance set  

 

Figure 6. Detected position of minimum distance 
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